• Title/Summary/Keyword: Keyword Ranking

Search Result 55, Processing Time 0.031 seconds

Keyword Search and Ranking Methods on Semantic Web Documents (시맨틱 웹 문서에 대한 키워드 검색 및 랭킹 기법)

  • Kim, Youn-Hee;Oh, Sung-Kyun
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.86-93
    • /
    • 2012
  • In this paper, we propose keyword search and ranking methods for OWL documents that describe metadata and ontology on the Semantic Web. The proposed keyword search method defines a unit of keyword search result as an information resource and expands a scope of query keyword to names of class and property or literal data. And we reflected derived information by inference in the keyword search by considering the elements of OWL documents such as hierarchical relationship of classes or properties and equal relationship of classes. In addition, our method can search a large number of information resources that are relevant to query keywords because of information resources indirectly associated with query keywords through semantic relationship. Our ranking method can improve user's search satisfaction because of involving a variety of factors in the ranking by considering the characteristics of OWL. The proposed methods can be used to retrieve digital contents, such as broadcast programs.

Soccer Transfer Gossip Analysis using Keyword Ranking

  • Sinn, Seung-Woo;Kang, Dae-Ki
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.51-56
    • /
    • 2017
  • In every Summer and Winter, there open soccer transfer markets. And these markets draw huge attention from soccer fans and other ordinary people all around world. This phenomenon might indicate great interest of people from the amount of news, blog articles, public messages and replies from online community and forums about popular players and clubs of many leagues. Especially, transfer markets in the year 2017 have generated many gossips than before. In this research, we performed keyword analysis and ranking of news and messages collected and analyzed from online news sites and online forum sites, in order to investigate who and what clubs are mainly discussed.

Accelerating Keyword Search Processing over XML Documents using Document-level Ranking (문서 단위 순위화를 통한 XML 문서에 대한 키워드 검색 성능 향상)

  • Lee, Hyung-Dong;Kim, Hyoung-Joo
    • Journal of KIISE:Databases
    • /
    • v.33 no.5
    • /
    • pp.538-550
    • /
    • 2006
  • XML Keyword search enables us to get information easily without knowledge of structure of documents and returns specific and useful partial document results instead of whole documents. Element level query processing makes it possible, but computational complexity, as the number of documents grows, increases significantly overhead costs. In this paper, we present document-level ranking scheme over XML documents which predicts results of element-level processing to reduce processing cost. To do this, we propose the notion of 'keyword proximity' - the correlation of keywords in a document that affects the results of element-level query processing using path information of occurrence nodes and their resemblances - for document ranking process. In benefit of document-centric view, it is possible to reduce processing time using ranked document list or filtering of low scored documents. Our experimental evaluation shows that document-level processing technique using ranked document list is effective and improves performance by the early termination for top-k query.

A Keyword Network Analysis on Research Trends in the Area of Health Insurance (건강보험 연구동향에 대한 키워드 네트워크 분석)

  • Lee, Su Jung;Lee, Sun-Hee
    • Health Policy and Management
    • /
    • v.31 no.3
    • /
    • pp.335-343
    • /
    • 2021
  • Background: The purpose of this study was to extract the major areas of interest in health insurance research in Korea, and infer policy agendas related to health insurance by analyzing research keywords. Methods: For this study, 2,590 articles were selected from among 7,459 academic papers related to health insurance published between January 1987 and December 2018, which were looked up using the Research Information Sharing Service (RISS). Keyword extraction and keyword network analysis were performed using the KrKwic, KrTitle, and UCINET software. Results: First, the number of studies in the area of health insurance continued to increase in all government terms, and it was not until after the 2000s that the subjects of health insurance researches were diversified. Second, degree centrality showed that 'medical expenditure' and 'medical utilization' were consistently high-ranking keywords regardless of the government in power. Aging and long-term care insurance-related keywords were ranked higher in the Lee Myung-bak government, Park Geun-hye government, and Moon Jae-in government. Third, betweenness centrality showed the same high ranking in key topics such as medical expenditure and medical utilization, while the ranking of key keywords differed depending on the interests and characteristics of each government policy. Conclusion: We confirm that health insurance as a research topic has been the main theme in Korean health care research fields. Research keywords extracted from articles also corresponded to the main health policies promoted during each government period. Efforts to systematically investigate policy megatrends are needed to plan adaptive future policies.

A Keyword Query Processing Technique of OWL Data using Semantic Relationships (의미적 관계를 이용한 OWL 데이터의 키워드 질의 처리 기법)

  • Kim, Youn Hee;Kim, Sung Wan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.1
    • /
    • pp.59-72
    • /
    • 2013
  • In this paper, we propose a keyword query processing technique based on semantic relationships for OWL data. The proposed keyword query processing technique can improve user's search satisfaction by performing two types of associative search. The first associative search uses information inferred by the relationships between classes or properties during keyword query processing. And it supports to search all information resources that are either directly or indirectly related with query keywords by semantic relationships between information resources. The second associative search returns not only information resources related with query keywords but also values of properties of them. We design a storage schema and index structures to support the proposed technique. And we propose evaluation functions to rank retrieved information resources according to three criteria. Finally, we evaluate the validity and accuracy of the proposed technique through experiments. The proposed technique can be utilized in a variety of fields, such as paper retrieval and multimedia retrieval.

Development of a XML Web Services Retrieval Engine (XML 웹 서비스 검색 엔진의 개발)

  • Sohn, Seung-Beom;Oh, Il-Jin;Hwang, Yun-Young;Lee, Kyong-Ha;Lee, Kyu-Chul
    • Journal of Information Technology Applications and Management
    • /
    • v.13 no.4
    • /
    • pp.121-140
    • /
    • 2006
  • UDDI (Universal Discovery Description and Integration) Registry is used for Web Services registration and search. UDDI offers the search result to the keyword-based query. UDDI supports WSDL registration but it does not supports WSDL search. So it is required that contents based search and ranking using name and description in UDDI registration information and WSDL. This paper proposes a retrieval engine considering contents of services registered in the UDDI and WSDL. It uses Vector Space Model for similarity comparison between contents of those. UDDI registry information hierarchy and WSDL hierarchy are considered during searching process. This engine suppports two discovery methods. One is Keyword-based search and the other is template-based search supporting ranking for user's query. Template-based search offers how service interfaces correspond to the query for WSDL documents. Proposed retrieval engine can offer search result more accurately than one which UDDI offers and it can retrieve WSDL which is registered in UDDI in detail.

  • PDF

A study on Metaverse keyword Consumer perception survey after Covid-19 using big Data

  • LEE, JINHO;Byun, Kwang Min;Ryu, Gi Hwan
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.52-57
    • /
    • 2022
  • In this study, keywords from representative online portal sites such as Naver, Google, and Youtube were collected based on text mining analysis technique using Textom to check the changes in metqaverse after COVID-19. before Corona, it was confirmed that social media platforms such as Kakao Talk, Facebook, and Twitter were mentioned, and among the four metaverse, consumer awareness was still concentrated in the field of life logging. However, after Corona, keywords from Roblox, Fortnite, and Geppetto appeared, and keywords such as Universe, Space, Meta, and the world appeared, so Metaverse was recognized as a virtual world. As a result, it was confirmed that consumer perception changed from the life logging of Metaverse to the mirror world. Third, keywords such as cryptocurrency, cryptocurrency, coin, and exchange appeared before Corona, and the word frequency ranking for blockchain, which is an underlying technology, was high, but after Corona, the word frequency ranking fell significantly as mentioned above.

ValueRank: Keyword Search of Object Summaries Considering Values

  • Zhi, Cai;Xu, Lan;Xing, Su;Kun, Lang;Yang, Cao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5888-5903
    • /
    • 2019
  • The Relational ranking method applies authority-based ranking in relational dataset that can be modeled as graphs considering also their tuples' values. Authority directions from tuples that contain the given keywords and transfer to their corresponding neighboring nodes in accordance with their values and semantic connections. From our previous work, ObjectRank extends to ValueRank that also takes into account the value of tuples in authority transfer flows. In a maked difference from ObjectRank, which only considers authority flows through relationships, it is only valid in the bibliographic databases e.g. DBLP dataset, ValueRank facilitates the estimation of importance for any databases, e.g. trading databases, etc. A relational keyword search paradigm Object Summary (denote as OS) is proposed recently, given a set of keywords, a group of Object Summaries as its query result. An OS is a multilevel-tree data structure, in which node (namely the tuple with keywords) is OS's root node, and the surrounding nodes are the summary of all data on the graph. But, some of these trees have a very large in total number of tuples, size-l OSs are the OS snippets, have also been investigated using ValueRank.We evaluated the real bibliographical dataset and Microsoft business databases to verify of our proposed approach.

Associated Keyword Recommendation System for Keyword-based Blog Marketing (키워드 기반 블로그 마케팅을 위한 연관 키워드 추천 시스템)

  • Choi, Sung-Ja;Son, Min-Young;Kim, Young-Hak
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.5
    • /
    • pp.246-251
    • /
    • 2016
  • Recently, the influence of SNS and online media is rapidly growing with a consequent increase in the interest of marketing using these tools. Blog marketing can increase the ripple effect and information delivery in marketing at low cost by prioritizing keyword search results of influential portal sites. However, because of the tough competition to gain top ranking of search results of specific keywords, long-term and proactive efforts are needed. Therefore, we propose a new method that recommends associated keyword groups with the possibility of higher exposure of the blog. The proposed method first collects the documents of blog including search results of target keyword, and extracts and filters keyword with higher association considering the frequency and location information of the word. Next, each associated keyword is compared to target keyword, and then associated keyword group with the possibility of higher exposure is recommended considering the information such as their association, search amount of associated keyword per month, the number of blogs including in search result, and average writhing date of blogs. The experiment result shows that the proposed method recommends keyword group with higher association.

Retrieval Model using Subject Classification Table, User Profile, and LSI (전공분류표, 사용자 프로파일, LSI를 이용한 검색 모델)

  • Woo Seon-Mi
    • The KIPS Transactions:PartD
    • /
    • v.12D no.5 s.101
    • /
    • pp.789-796
    • /
    • 2005
  • Because existing information retrieval systems, in particular library retrieval systems, use 'exact keyword matching' with user's query, they present user with massive results including irrelevant information. So, a user spends extra effort and time to get the relevant information from the results. Thus, this paper will propose SULRM a Retrieval Model using Subject Classification Table, User profile, and LSI(Latent Semantic Indexing), to provide more relevant results. SULRM uses document filtering technique for classified data and document ranking technique for non-classified data in the results of keyword-based retrieval. Filtering technique uses Subject Classification Table, and ranking technique uses user profile and LSI. And, we have performed experiments on the performance of filtering technique, user profile updating method, and document ranking technique using the results of information retrieval system of our university' digital library system. In case that many documents are retrieved proposed techniques are able to provide user with filtered data and ranked data according to user's subject and preference.