• Title/Summary/Keyword: Keyword Evaluation

Search Result 174, Processing Time 0.022 seconds

Analyzing Trends in Early Childhood Evaluation Research Using Keyword Network Analysis (키워드 네트워크 분석을 활용한 영유아교육기관 평가 연구동향 분석)

  • Sung Hee, Hong;Kyeong Hwa, Lee
    • Korean Journal of Childcare and Education
    • /
    • v.20 no.1
    • /
    • pp.91-111
    • /
    • 2024
  • Objective: The purpose of this study is to explore trends in institutional evaluation research in early childhood education through keyword network analysis. This aims to understand trends in academic discourse on institutional evaluation and gain implications for follow-up research and related policy directions. Methods: A total of 6,629 keywords were extracted from 572 dissertations and journal articles published from January 2006 to October 2023 for the purpose of analyzing and visualizing the frequency and centrality of keywords, as well as the structural properties of keyword networks. The analysis and visualization were conducted using the TEXTOM, UCINET6, and NetDraw programs. Results: First, the number of institutional evaluation studies increased steadily from 2006 to 2010 and then decreased, with a higher frequency of studies on daycare centers compared to kindergartens. Second, the most frequently occurring keyword in the analysis was 'daycare center,' and the highest connection strength was found in the term 'daycare-center-evaluation.' Third, network analysis revealed that key terms for institutional evaluation research included 'evaluation certification,' 'recognition,' 'evaluation indicators,' 'teacher,' 'daycare center,' and 'kindergarten.' In the ego network analysis for each institution, 'parent' emerged as a highly ranked keyword. Conclusion/Implications: This study confirmed the perspectives of previous studies by revealing the structure of core concepts in early childhood education institution evaluation research, and provided implications for follow-up and direction of institution evaluation

Performance Evaluation of Nonkeyword Modeling and Postprocessing for Vocabulary-independent Keyword Spotting (가변어휘 핵심어 검출을 위한 비핵심어 모델링 및 후처리 성능평가)

  • Kim, Hyung-Soon;Kim, Young-Kuk;Shin, Young-Wook
    • Speech Sciences
    • /
    • v.10 no.3
    • /
    • pp.225-239
    • /
    • 2003
  • In this paper, we develop a keyword spotting system using vocabulary-independent speech recognition technique, and investigate several non-keyword modeling and post-processing methods to improve its performance. In order to model non-keyword speech segments, monophone clustering and Gaussian Mixture Model (GMM) are considered. We employ likelihood ratio scoring method for the post-processing schemes to verify the recognition results, and filler models, anti-subword models and N-best decoding results are considered as an alternative hypothesis for likelihood ratio scoring. We also examine different methods to construct anti-subword models. We evaluate the performance of our system on the automatic telephone exchange service task. The results show that GMM-based non-keyword modeling yields better performance than that using monophone clustering. According to the post-processing experiment, the method using anti-keyword model based on Kullback-Leibler distance and N-best decoding method show better performance than other methods, and we could reduce more than 50% of keyword recognition errors with keyword rejection rate of 5%.

  • PDF

A Program Similarity Evaluation using Keyword Extraction on Abstract Syntax Tree (구문트리에서 키워드 추출을 이용한 프로그램 유사도 평가)

  • Kim Young-Chul;Choi Jaeyoung
    • The KIPS Transactions:PartA
    • /
    • v.12A no.2 s.92
    • /
    • pp.109-116
    • /
    • 2005
  • In this paper, we introduce the method that a user analyses the similarity of the two programs by using keyword from the syntactic tree, created after the syntax analysis, and its implementation. The main advantage of the method is the performance improvement through using only keyword of syntax tree. In the paper, we propose the similarity evaluation model and how we extract keyword from syntax tree. In addition, we also show the improvement in the performance in analysis and in the system's structure. We expect that our system will be utilized in the similarity evaluation in text and XML documents.

A Study on Technology Forecasting based on Co-occurrence Network of Keyword in Multidisciplinary Journals (다학제 분야 학술지의 주제어 동시발생 네트워크를 활용한 기술예측 연구)

  • Kim, Hyunuk;Ahn, Sang-Jin;Jung, Woo-Sung
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.40 no.4
    • /
    • pp.49-63
    • /
    • 2015
  • Keyword indexed in multidisciplinary journals show trends about science and technology innovation. Nature and Science were selected as multidisciplinary journals for our analysis. In order to reduce the effect of plurality of keyword, stemming algorithm were implemented. After this process, we fitted growth curve of keyword (stem) following bass model, which is a well-known model in diffusion process. Bass model is useful for expressing growth pattern by assuming innovative and imitative activities in innovation spreading. In addition, we construct keyword co-occurrence network and calculate network measures such as centrality indices and local clustering coefficient. Based on network metrics and yearly frequency of keyword, time series analysis was conducted for obtaining statistical causality between these measures. For some cases, local clustering coefficient seems to Granger-cause yearly frequency of keyword. We expect that local clustering coefficient could be a supportive indicator of emerging science and technology.

Speaker Adaptation Performance Evaluation in Keyword Spotting System (500단어급 핵심어 검출기에서 화자적응 성능 평가)

  • Seo Hyun-Chul;Lee Kyong-Rok;Kim Jin-Young;Choi Seung-Ho
    • MALSORI
    • /
    • no.43
    • /
    • pp.151-161
    • /
    • 2002
  • This study presents performance analysis results of speaker adaptation for keyword spotting system. In this paper, we implemented MLLR (Maximum Likelihood Linear Regression) method on our middle size vocabulary keyword spotting system. This system was developed for directory services of universities and colleges. The experimental results show that speaker adaptation reduces the false alarm rate to 1/3 with the preservation of the mis-detection ratio. This improvement is achieved when speaker adaptation is applied to not only keyword models but also non-keyword models.

  • PDF

A Keyword Query Processing Technique of OWL Data using Semantic Relationships (의미적 관계를 이용한 OWL 데이터의 키워드 질의 처리 기법)

  • Kim, Youn Hee;Kim, Sung Wan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.1
    • /
    • pp.59-72
    • /
    • 2013
  • In this paper, we propose a keyword query processing technique based on semantic relationships for OWL data. The proposed keyword query processing technique can improve user's search satisfaction by performing two types of associative search. The first associative search uses information inferred by the relationships between classes or properties during keyword query processing. And it supports to search all information resources that are either directly or indirectly related with query keywords by semantic relationships between information resources. The second associative search returns not only information resources related with query keywords but also values of properties of them. We design a storage schema and index structures to support the proposed technique. And we propose evaluation functions to rank retrieved information resources according to three criteria. Finally, we evaluate the validity and accuracy of the proposed technique through experiments. The proposed technique can be utilized in a variety of fields, such as paper retrieval and multimedia retrieval.

An Analysis of IT Proposal Evaluation Results using Big Data-based Opinion Mining (빅데이터 분석 기반의 오피니언 마이닝을 이용한 정보화 사업 평가 분석)

  • Kim, Hong Sam;Kim, Chong Su
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Current evaluation practices for IT projects suffer from several problems, which include the difficulty of self-explanation for the evaluation results and the improperly scaled scoring system. This study aims to develop a methodology of opinion mining to extract key factors for the causal relationship analysis and to assess the feasibility of quantifying evaluation scores from text comments using opinion mining based on big data analysis. The research has been performed on the domain of publicly procured IT proposal evaluations, which are managed by the National Procurement Service. Around 10,000 sets of comments and evaluation scores have been gathered, most of which are in the form of digital data but some in paper documents. Thus, more refined form of text has been prepared using various tools. From them, keywords for factors and polarity indicators have been extracted, and experts on this domain have selected some of them as the key factors and indicators. Also, those keywords have been grouped into into dimensions. Causal relationship between keyword or dimension factors and evaluation scores were analyzed based on the two research models-a keyword-based model and a dimension-based model, using the correlation analysis and the regression analysis. The results show that keyword factors such as planning, strategy, technology and PM mostly affects the evaluation result and that the keywords are more appropriate forms of factors for causal relationship analysis than the dimensions. Also, it can be asserted from the analysis that evaluation scores can be composed or calculated from the unstructured text comments using opinion mining, when a comprehensive dictionary of polarity for Korean language can be provided. This study may contribute to the area of big data-based evaluation methodology and opinion mining for IT proposal evaluation, leading to a more reliable and effective IT proposal evaluation method.

Tag Search System Using the Keyword Extraction and Similarity Evaluation (키워드 추출 및 유사도 평가를 통한 태그 검색 시스템)

  • Jung, Jaein;Yoo, Myungsik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2485-2487
    • /
    • 2015
  • Recently, Hashtag is widely used in SNS like Facebook, Twitter and personal blogs. However, the efficiency of tag search system is poor due to the indiscriminate use of hashtags. To enhance the accuracy of tag search system, we proposed a tag search system using the keyword extraction and similarity evaluation. The experimental results show that the proposed system provides the higher accuracy on tag search results.

A study on the Method of the Keyword Spotting Recognition in the Continuous speech using Neural Network (신경 회로망을 이용한 연속 음성에서의 keyword spotting 인식 방식에 관한 연구)

  • Yang, Jin-Woo;Kim, Soon-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.43-49
    • /
    • 1996
  • This research proposes a system for speaker independent Korean continuous speech recognition with 247 DDD area names using keyword spotting technique. The applied recognition algorithm is the Dynamic Programming Neural Network(DPNN) based on the integration of DP and multi-layer perceptron as model that solves time axis distortion and spectral pattern variation in the speech. To improve performance, we classify word model into keyword model and non-keyword model. We make an experiment on postprocessing procedure for the evaluation of system performance. Experiment results are as follows. The recognition rate of the isolated word is 93.45% in speaker dependent case. The recognition rate of the isolated word is 84.05% in speaker independent case. The recognition rate of simple dialogic sentence in keyword spotting experiment is 77.34% as speaker dependent, and 70.63% as speaker independent.

  • PDF

Font Recommendation Service Based on Emotion Keyword Attribute Value Estimation (감정 기반 키워드 속성값 산출에 따른 글꼴 추천 서비스)

  • Ji, Youngseo;Lim, SoonBum
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.999-1006
    • /
    • 2022
  • The use of appropriate fonts is not only an aesthetic point of view, but also a factor influencing the reinforcement of meaning. However, it is a difficult process and wastes a lot of time for general users to choose a font that suits their needs and emotions. Therefore, in this study, keywords and fonts to be used in the experiment were selected for emotion-based font recommendation, and keyword values for each font were calculated through an experiment to check the correlation between keywords and fonts. Using the experimental results, a prototype of a keyword-based font recommendation system was designed and the possibility of the system was tested. As a result of the usability evaluation of the font recommendation system prototype, it received a positive evaluation compared to the existing font search system, but the number of fonts was limited and users had difficulties in the process of associating keywords suitable for their desired situation. Therefore, we plan to expand the number of fonts and conduct follow-up research to automatically recommend fonts suitable for the user's situation without selecting keywords.