• Title/Summary/Keyword: Key robustness

Search Result 214, Processing Time 0.025 seconds

A Novel Face Recognition Algorithm based on the Deep Convolution Neural Network and Key Points Detection Jointed Local Binary Pattern Methodology

  • Huang, Wen-zhun;Zhang, Shan-wen
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.363-372
    • /
    • 2017
  • This paper presents a novel face recognition algorithm based on the deep convolution neural network and key point detection jointed local binary pattern methodology to enhance the accuracy of face recognition. We firstly propose the modified face key feature point location detection method to enhance the traditional localization algorithm to better pre-process the original face images. We put forward the grey information and the color information with combination of a composite model of local information. Then, we optimize the multi-layer network structure deep learning algorithm using the Fisher criterion as reference to adjust the network structure more accurately. Furthermore, we modify the local binary pattern texture description operator and combine it with the neural network to overcome drawbacks that deep neural network could not learn to face image and the local characteristics. Simulation results demonstrate that the proposed algorithm obtains stronger robustness and feasibility compared with the other state-of-the-art algorithms. The proposed algorithm also provides the novel paradigm for the application of deep learning in the field of face recognition which sets the milestone for further research.

UN-Substituted Video Steganography

  • Maria, Khulood Abu;Alia, Mohammad A.;Alsarayreh, Maher A.;Maria, Eman Abu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.382-403
    • /
    • 2020
  • Steganography is the art of concealing the existence of a secret data in a non-secret digital carrier called cover media. While the image of steganography methods is extensively researched, studies on other cover files remain limited. Videos are promising research items for steganography primitives. This study presents an improved approach to video steganography. The improvement is achieved by allowing senders and receivers exchanging secret data without embedding the hidden data in the cover file as in traditional steganography methods. The method is based mainly on searching for exact matches between the secret text and the video frames RGB channel pixel values. Accordingly, a random key-dependent data is generated, and Elliptic Curve Public Key Cryptography is used. The proposed method has an unlimited embedding capacity. The results show that the improved method is secure against traditional steganography attacks since the cover file has no embedded data. Compared to other existing Steganography video systems, the proposed system shows that the method proposed is unlimited in its embedding capacity, system invisibility, and robustness. The system achieves high precision for data recovery in the receiver. The performance of the proposed method is found to be acceptable across different sizes of video files.

Latin Hypercube Sampling Based Probabilistic Small Signal Stability Analysis Considering Load Correlation

  • Zuo, Jian;Li, Yinhong;Cai, Defu;Shi, Dongyuan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1832-1842
    • /
    • 2014
  • A novel probabilistic small signal stability analysis (PSSSA) method considering load correlation is proposed in this paper. The superiority Latin hypercube sampling (LHS) technique combined with Monte Carlo simulation (MCS) is utilized to investigate the probabilistic small signal stability of power system in presence of load correlation. LHS helps to reduce the sampling size, meanwhile guarantees the accuracy and robustness of the solutions. The correlation coefficient matrix is adopted to represent the correlations between loads. Simulation results of the two-area, four-machine system prove that the proposed method is an efficient and robust sampling method. Simulation results of the 16-machine, 68-bus test system indicate that load correlation has a significant impact on the probabilistic analysis result of the critical oscillation mode under a certain degree of load uncertainty.

Resilient Routing Overlay Network Construction with Super-Relay Nodes

  • Tian, Shengwen;Liao, Jianxin;Li, Tonghong;Wang, Jingyu;Cui, Guanghai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.1911-1930
    • /
    • 2017
  • Overlay routing has emerged as a promising approach to improve reliability and efficiency of the Internet. The key to overlay routing is the placement and maintenance of the overlay infrastructure, especially, the selection and placement of key relay nodes. Spurred by the observation that a few relay nodes with high betweenness centrality can provide more optimal routes for a large number of node pairs, we propose a resilient routing overlay network construction method by introducing Super-Relay nodes. In detail, we present the K-Minimum Spanning Tree with Super-Relay nodes algorithm (SR-KMST), in which we focus on the selection and connection of Super-Relay nodes to optimize the routing quality in a resilient and scalable manner. For the simultaneous path failures between the default physical path and the overlay backup path, we also address the selection of recovery path. The objective is to select a proper one-hop recovery path with minimum cost in path probing and measurement. Simulations based on a real ISP network and a synthetic Internet topology show that our approach can provide high-quality overlay routing service, while achieving good robustness.

Storage Feature-Based Watermarking Algorithm with Coordinate Values Preservation for Vector Line Data

  • Zhou, Qifei;Ren, Na;Zhu, Changqing;Tong, Deyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3475-3496
    • /
    • 2018
  • Most of current watermarking algorithms for GIS vector data embed copyright information by means of modifying the coordinate values, which will do harm to its quality and accuracy. To preserve the fidelity of vector line data and protect its copyright at the same time, a lossless watermarking algorithm is proposed based on storage feature in this paper. Firstly, the superiority of embedding watermark based on storage feature is demonstrated theoretically and technically. Then, the basic concepts and operations on storage feature have been defined including length and angle of the polyline feature. In the process of embedding watermark, the watermark information is embedded into directions of polyline feature by the quantitative mechanism, while the positions of embedding watermark are determined by the feature length. Hence, the watermark can be extracted by the same geometric features without original data or watermark. Finally, experiments have been conducted to show that coordinate values remain unchanged after embedding watermark. Moreover, experimental results are presented to illustrate the effectiveness of the method.

Damping of Inter-Area Low Frequency Oscillation Using an Adaptive Wide-Area Damping Controller

  • Yao, Wei;Jiang, L.;Fang, Jiakun;Wen, Jinyu;Wang, Shaorong
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.27-36
    • /
    • 2014
  • This paper presents an adaptive wide-area damping controller (WADC) based on generalized predictive control (GPC) and model identification for damping the inter-area low frequency oscillations in large-scale inter-connected power system. A recursive least-squares algorithm (RLSA) with a varying forgetting factor is applied to identify online the reduced-order linearlized model which contains dominant inter-area low frequency oscillations. Based on this linearlized model, the generalized predictive control scheme considering control output constraints is employed to obtain the optimal control signal in each sampling interval. Case studies are undertaken on a two-area four-machine power system and the New England 10-machine 39-bus power system, respectively. Simulation results show that the proposed adaptive WADC not only can damp the inter-area oscillations effectively under a wide range of operation conditions and different disturbances, but also has better robustness against to the time delay existing in the remote signals. The comparison studies with the conventional lead-lag WADC are also provided.

Stereoscopic Video Conversion Based on Image Motion Classification and Key-Motion Detection from a Two-Dimensional Image Sequence (영상 운동 분류와 키 운동 검출에 기반한 2차원 동영상의 입체 변환)

  • Lee, Kwan-Wook;Kim, Je-Dong;Kim, Man-Bae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.1086-1092
    • /
    • 2009
  • Stereoscopic conversion has been an important and challenging issue for many 3-D video applications. Usually, there are two different stereoscopic conversion approaches, i.e., image motion-based conversion that uses motion information and object-based conversion that partitions an image into moving or static foreground object(s) and background and then converts the foreground in a stereoscopic object. As well, since the input sequence is MPEG-1/2 compressed video, motion data stored in compressed bitstream are often unreliable and thus the image motion-based conversion might fail. To solve this problem, we present the utilization of key-motion that has the better accuracy of estimated or extracted motion information. To deal with diverse motion types, a transform space produced from motion vectors and color differences is introduced. A key-motion is determined from the transform space and its associated stereoscopic image is generated. Experimental results validate effectiveness and robustness of the proposed method.

A Study on Trust Improvement of Packets Transmission using ZCN and N2N Authentication Technique (ZCN과 N2N 인증 기법을 이용한 패킷 전송에 대한 신뢰성 향상에 관한 연구)

  • Yang, Hwanseok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.4
    • /
    • pp.61-68
    • /
    • 2015
  • MANET has various vulnerability in wireless network and is more vulnerable in security because central management is not performed. In particular, routing attack may decrease performance of the overall network because the mobile node acts as a router. In this paper, we proposed authentication technique for improving the reliability of the network by increasing the integrity of the routing control packet and blocking effectively attacks that occur frequently in the inside. The proposed technique is consisted of two authentication methods of ZCN and N2N. ZCN authentication method is to elect CA nodes and monitor the role of the CA nodes. N2N authentication method is for an integrity check on the routing packets between nodes. Index key is determined by combining the hop count value to shared key table issued from CA in order to increase the robustness of the internal attack. Also, the overhead of key distribution was reduced by distributing a shared key to nodes certificated from CA. The excellent performance of the proposed method was confirmed through the comparison experiments.

Structural damage identification using an iterative two-stage method combining a modal energy based index with the BAS algorithm

  • Wang, Shuqing;Jiang, Yufeng;Xu, Mingqiang;Li, Yingchao;Li, Zhixiong
    • Steel and Composite Structures
    • /
    • v.36 no.1
    • /
    • pp.31-45
    • /
    • 2020
  • The purpose of this study is to develop an effective iterative two-stage method (ITSM) for structural damage identification of offshore platform structures. In each iteration, a new damage index, Modal Energy-Based Damage Index (MEBI), is proposed to help effectively locate the potential damage elements in the first stage. Then, in the second stage, the beetle antenna search (BAS) algorithm is used to estimate the damage severity of these elements. Compared with the well-known particle swarm optimization (PSO) algorithm and genetic algorithm (GA), this algorithm has lower computational cost. A modal energy based objective function for the optimization process is proposed. Using numerical and experimental data, the efficiency and accuracy of the ITSM are studied. The effects of measurement noise and spatial incompleteness of mode shape are both considered. All the obtained results show that under these influences, the ITSM can accurately identify the true location and severity of damage. The results also show that the objective function based on modal energy is most suitable for the ITSM compared with that based on flexibility and weighted natural frequency-mode shape.

Secure Device to Device Communications using Lightweight Cryptographic Protocol

  • Ajith Kumar, V;Reddy, K Satyanarayan
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.354-362
    • /
    • 2021
  • The device to device (D2D) communication is an important and emerging area for future cellular networks. It is concerned about all aspect of secure data transmission between end devices along with originality of the data. In this paradigm, the major concerns are about how keys are delivered between the devices when the devices require the cryptographic keys. Another major concern is how effectively the receiver device verifies the data sent by the sender device which means that the receiver checks the originality of the data. In order to fulfill these requirements, the proposed system able to derive a cryptographic key using a single secret key and these derived keys are securely transmitted to the intended receiver with procedure called mutual authentication. Initially, derived keys are computed by applying robust procedure so that any adversary feel difficulties for cracking the keys. The experimental results shows that both sender and receiver can identify themselves and receiver device will decrypt the data only after verifying the originality of the data. Only the devices which are mutually authenticated each other can interchange the data so that entry of the intruder node at any stage is not possible.