• Title/Summary/Keyword: Key agreement

Search Result 643, Processing Time 0.026 seconds

Provably-Secure and Communication-Efficient Protocol for Dynamic Group Key Exchange (안전성이 증명 가능한 효율적인 동적 그룹 키 교환 프로토콜)

  • Junghyun Nam;Jinwoo Lee;Sungduk Kim;Seungjoo Kim;Dongho Won
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.4
    • /
    • pp.163-181
    • /
    • 2004
  • Group key agreement protocols are designed to solve the fundamental problem of securely establishing a session key among a group of parties communicating over a public channel. Although a number of protocols have been proposed to solve this problem over the years, they are not well suited for a high-delay wide area network; their communication overhead is significant in terms of the number of communication rounds or the number of exchanged messages, both of which are recognized as the dominant factors that slow down group key agreement over a networking environment with high communication latency. In this paper we present a communication-efficient group key agreement protocol and prove its security in the random oracle model under the factoring assumption. The proposed protocol provides perfect forward secrecy and requires only a constant number of communication rounds for my of group rekeying operations, while achieving optimal message complexity.

Security analysis for authenticated key agreement protocol (상호 인증 키 교환 프로토콜의 안전성 분석)

  • 이재민;류은경;김기원;이형목;유기영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10c
    • /
    • pp.547-549
    • /
    • 2002
  • Seo와 Sweeny는 통신 당사자간의 직접적인 세션키(session key) 교환을 위해 SAKA(Simple Authenticated Key Agreement Algorithm)를 제안했다. SAKA는 패스워드(password)를 사용하여 사용자인증 기능을 제공하는 변형된 Diffie-Hellman 키 교환 프로토콜로써, 키 생성 및 사용자 인증 시 요구되는 계산량과 메시지 전송량을 고려할 때 효율적인 프로토콜이다. 그러나, 최근에 Lin은 SAKA의 안전성에 취약점이 있음을 지적하고 개선된 프로토콜을 제안하였다. 본 논문에서는 개선된 프로토콜이 여전히 재전송 공격(replay attack)에 안전하지 않기 때문에 사용자 인증을 제공 할 수 없음을 보인다.

  • PDF

Elliptic Curve AMP Protocol (타원곡선을 이용한 AMP 프로토콜)

  • Ahn, Chang-Sup;Heu, Shin
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.11
    • /
    • pp.622-633
    • /
    • 2002
  • Authentication and Key Agreement using password provide convenience and amenity, but what human can remember has extremely low entropy. To overcome its defects, AMP(Authentiration and key agreement via Memorable Password) which performs authentication and key agreement securely via low entropy password are presented. AMP uses Diffie-Hellman problem that depends on discrete logarithm problem. Otherwise, this thesis applies elliptic curve cryptosystem to AMP for further efficiency That is, this thesis presents EC-AMP(Elliptic Curve-AMP) protocol based on elliptic curve discrete logarithm problem instead of discrete logarithm problem, and shows its high performance through the implementation. EC-AMP secures against various attacks in the random oracle model just as AMP Thus, we nay supply EC-AMP to the network environment that requires authentication and key agreement to get both convenience and security from elliptic curve discrete logarithm problem.

Design and Performance Analysis of Queue-based Group Diffie-Hellman Protocol (QGDH)

  • Hong, Sunghyuck;Lee, Sungjin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.1
    • /
    • pp.149-165
    • /
    • 2013
  • Current group key agreement protocols, which are often tree-based, have unnecessary delays that are caused when members with low-performance computer systems join a group key computation process. These delays are caused by the computations necessary to balance a key tree after membership changes. An alternate approach to group key generation that reduces delays is the dynamic prioritizing mechanism of queue-based group key generation. We propose an efficient group key agreement protocol and present the results of performance evaluation tests of this protocol. The queue-based approach that we propose is scalable and requires less computational overhead than conventional tree-based protocols.

Secure Private Key Revocation Scheme in Anonymous Cluster -Based MANETs

  • Park, YoHan;Park, YoungHo
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.4
    • /
    • pp.499-505
    • /
    • 2015
  • Security supports are a significant factor in the design of mobile ad hoc networks. In the dynamic topology where the node changes frequently, private key generation and revocation for newly joining and leaving nodes must be considered. In addition, the identities of individual nodes must be protected as well in mobile networks to avoid personal privacy concerns. This paper proposes ID-based private key revocation scheme and non-interactive key agreement scheme in anonymous MANETs. The proposed scheme provides the user privacy using pseudonyms and private key generation and revocation schemes with consideration of dynamic user changes. Therefore, our schemes can be applied in dynamic and privacy-preserving MANETs which are helpful to share multimedia data.

Design and Performance Analysis of Queue-based Group Diffie-Hellman Protocol (QGDH)

  • Hong, Sunghyuck;Lee, Sungjin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.7
    • /
    • pp.1737-1753
    • /
    • 2013
  • Current group key agreement protocols, which are often tree-based, have unnecessary delays that are caused when members with low-performance computer systems join a group key computation process. These delays are caused by the computations necessary to balance a key tree after membership changes. An alternate approach to group key generation that reduces delays is the dynamic prioritizing mechanism of queue-based group key generation. We propose an efficient group key agreement protocol and present the results of performance evaluation tests of this protocol. The queue-based approach that we propose is scalable and requires less computational overhead than conventional tree-based protocols.

PayWord System using ID-based tripartite Key Agreement Protocol (ID 기반 키동의 프로토콜을 이용한 PayWord 시스템)

  • 이현주;이충세
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2C
    • /
    • pp.348-353
    • /
    • 2004
  • Development of an efficient and secure payment system is prerequisite for the construction of electronic payment mechanism in mobile environment. Since current PayWord protocol system generates vendor's certificate for each transaction, it requires lot of operation for transaction. In this paper, we use a session key generated by ID-based tripartite Key agreement protocol which use an Elliptic Curve Cryptosystem over finite field $F_{q}$ for transactions. Therefore, our protocol reduces algorithm operations. In particular, proposed protocol using ID-based public key cryptosystem has the advantages over the existing systems in speed and it is more secure in Man-in-the-middle attacks and Forward secrecy.

Design of Unproved Diffie-Hellman Key Agreement Protocol Based on Distance Bounding for Peer-to-peer Wireless Networks (향상된 경계 결정 기반의 Diffie-Hellman 키 일치 프로토콜)

  • Park, Sern-Young;Kim, Ju-Young;Song, Hong-Yeop
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1C
    • /
    • pp.117-123
    • /
    • 2008
  • We propose an improved Diffie-Hellman(DH) key agreement protocol over a radio link in peer-to-peer networks. The proposed protocol ensures a secure establishment of the shared key between two parties through distance bounding(DB). Proposed protocol is much improved in the sense that we now reduce the number of messages exchanged by two, the number of parameters maintained by four, and 2(7682(k/64)-64) of XOR operations, where k is the length of the random sequence used in the protocol. Also, it ensures a secure reusability of DH public parameters. Start after striking space key 2 times.

Improved Two-Party ID-Based Authenticated Key Agreement Protocol (개선된 두 참여자간 식별자 기반 인증된 키 동의 프로토콜)

  • Vallent, Thokozani Felix;Kim, Hae-Jung;Yoon, Eun-Jun;Kim, Hyunsung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.7
    • /
    • pp.595-604
    • /
    • 2013
  • Devising a secure authenticated key agreement (AKA) protocol for two entities communicating over an open network is a matter of current research. McCullagh et al. proposed a new two-party identity-based AKA protocol supporting both key escrow and key escrow-less property instantiated by either in a single domain or over two distinct domains. In this paper, we show that their protocol over two distinct domains suffers from masquerading attack and therefore does not satisfy the claimed security. The attack is made possible due to the lack of sufficient authentication of entity and integrity assurance in the protocol. We then propose an efficient verifiable key agreement protocol by including signature primitive in the authentication procedure to solve the problem of McCullagh et al.'s protocol.

Authentication and Key Agreement Protocol based on NTRU in the Mobile Communication (NTRU기반의 이동 통신에서의 인증 및 키 합의 프로토콜)

  • 박현미;강상승;최영근;김순자
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.3
    • /
    • pp.49-59
    • /
    • 2002
  • As the electronic commerce increases rapidly in the mobile communication, security issues become more important. A suitable authentication and key agreement for the mobile communication environment is a essential condition. Some protocols based on the public key cryptosystem such as Diffie-Hellman, EIGamal etc. were adapted in the mobile communication. But these protocols that are based on the difficult mathematical problem in the algebra, are so slow and have long key-length. Therefore, these have many limitation to apply to the mobile communication. In this paper, we propose an authentication and key agreement protocol based on NTRU to overcome the restriction of the mobile communication environment such as limited sources. low computational fewer, and narrow bandwidth. The proposed protocol is faster than other protocols based on ECC, because of addition and shift operation with small numbers in the truncated polynomial ring. And it is as secure as other existent mathematical problem because it is based on finding the Shortest or Closest Vector Problem(SVP/CVP).