
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 1, Jan 2013 149

Copyright ⓒ 2013 KSII

http://dx.doi.org/10.3837/tiis.2013.01.010

Design and Performance Analysis of
Queue-based Group Diffie-Hellman

Protocol (QGDH)

Sunghyuck Hong
1
 and Sungjin Lee

2

1 Division of Information and Communication, Baekseok University

Cheonan, Korea
2 Division of Information and Communication, Baekseok University

Cheonan, Korea

[e-mail: {shong,lsj}@bu.ac.kr]

*Corresponding author: Sungjin Lee

revised December 7, 2012; accepted December 21, 2012; published January 29, 2013

Abstract

Current group key agreement protocols, which are often tree-based, have unnecessary delays

that are caused when members with low-performance computer systems join a group key

computation process. These delays are caused by the computations necessary to balance a key

tree after membership changes. An alternate approach to group key generation that reduces

delays is the dynamic prioritizing mechanism of queue-based group key generation. We

propose an efficient group key agreement protocol and present the results of performance

evaluation tests of this protocol. The queue-based approach that we propose is scalable and

requires less computational overhead than conventional tree-based protocols.

Keywords: Group key management, security, group communication, communication

complexity

150 Hong et al.: Design and Performance Analysis of Queue-based Group Diffie-Hellman Protocol (QGDH)

1. Introduction

Group communication on the Internet is exploding in popularity. Videoconferencing,

enterprise IM, desktop sharing, and numerous forms of e-commerce are but a few examples of

the ways in which the Internet is being used for business. The growing use of group

communication has highlighted the need for advances in security. There are several

approaches to securing user identities and other information transmitted over the Internet. One

of the foundations of secure communication is key management, a building block for

encryption, authentication, access control, and authorization [10]. Key management and

member authentication processes take place at the beginning of group communication. To

establish a secure group, all members are authenticated, then generate and use a common

group key (GK) to encrypt and decrypt messages [2].

To achieve a high level of security, the GK should be changed after any member joins or

leaves so that new members have no access to previous communications and former group

members have no access to current communications [15]. One problem inherent in this process

is that the computation of GKs often takes a significant amount of time – even when a group’s

size is relatively small [14]. To address this problem, a recent focus in key management is the

efficient generation of GKs [3][12][14]. It is this need for efficient key generation that we

address.

We present an innovative approach to GK generation, the Queue-based Group

Diffie-Hellman protocol (QGDH). QGDH provides a queue-based divide and conquer

algorithm that is more efficient than the Tree-based Group Diffie-Hellman (TGDH) protocol

and Enhanced Tree-based Group Diffie-Hellman (ETGDH) protocol [8], both of which use a

key tree in the GK generation process [12]. Our goal is to provide an efficient GK agreement

protocol that does not require a high level of computational overhead to maintain secure

communication.

This paper is organized as follows. In Section 2, we describe how GKs ensure security of

group communications, we introduce conventional GK generation protocols, including TGDH

and ETGDH, and we highlight the limitations of these existing protocols. In Section 3, we

present QGDH, our protocol for GK generation. We also describe how our protocol executes

the join, leave, partition, and merge operations needed to maintain secure communication.

Then, in Section 4, we test the performance of QGDH in a series of experiments. QGDH is

shown to outperform TGDH and ETGDH in multiple tasks and on multiple types of computer

systems. Our conclusions are presented in Section 5.

2. Group Key Agreement Protocols

2.1. Group Key Management

Group key (GK) management focuses on how to efficiently generate a GK to enable and

maintain secure communication. In this process, there are four requirements to ensure security:

(1) GK secrecy, (2) backward secrecy, (3) forward secrecy, and (4) key independence [10].

Each of these security requirements are defined as follows.

Assume that a GK is changed m times and the sequence of successive GKs is K = {K0, K1,…,

Km-1, Km}.

1. GK Secrecy guarantees that it is computationally infeasible for a passive adversary to

discover any GK Ki ∈ K for all i.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 1, Jan 2013 151

Copyright ⓒ 2013 KSII

2. Forward Secrecy guarantees that a passive adversary who knows a contiguous subset of

old GKs (say {K0,K1,…,Ki}) cannot discover any subsequent GK Kj for all i and j where j >

i.

3. Backward Secrecy guarantees that a passive adversary who knows a contiguous subset of

GKs (say {Ki,Ki+1,…,Kj}) cannot discover preceding GK Kl for all l, j, k where l < i < j.

4. Key Independence guarantees that a passive adversary who knows a proper subset of GKs

Ksubset ⊂ K cannot discover any other GK Ki ∈ (K – Ksubset).

Before examining GK secrecy, possible security attacks must be defined.

There are two types of security attacks in group communication: active attacks and passive

attacks. Active attacks involve injecting, deleting, delaying, and modifying protocol messages.

For the purposes of this paper, we place protecting against active attacks outside of our scope.

We assume the security of network protocols such as Public Key Infrastructure (PKI) and now

turn our focus to the topic of protection from passive attacks.

When considering passive attacks, eavesdropping is the most significant possible threat.

Efficient generation of GKs that meet the four requirements for security described above

addresses the possible threat of eavesdropping. Secure GKs prevent attackers from

discovering the GK in order to decrypt the message.

A GK is a common secret key which means that one key can encrypt and decrypt the

messages during communication, (i.e., it is a symmetric cipher). When using symmetric

ciphers, the most well known passive attack is a brute-force attack [5], the process of

enumerating all of the possible keys until the proper key is found that decrypts a given cipher

text into the correct plain text. All symmetric encryption algorithms will eventually fall to

brute-force attacks if enough time is allowed.

 In a brute-force attack, the expected number of trials before the correct key is found is

equal to half the size of the key space (the expected number of trials is the average of the

best-case and worst-case number of trials to find the right key). Symmetric ciphers with keys

of 64 bits or less are considered vulnerable to brute force attacks [5]. Therefore, key size must

be great enough to prevent such an attack on symmetric ciphers. If there are enough possible

keys to slow down a brute-force attack, then the algorithm can be considered secure [5]. GKs

that are 1,024 bit-long numbers are considered to be secure in current technology [13]. A

brute-force attack would need 2
1,024/2

 attempts to find the GK; such an approach is considered

computationally infeasible. A cryptographic protocol is said to be provably secure if it can be

shown to be essentially as difficult as solving a well-known and typically number-theoretic

problem, such as the computation of discrete logarithms.

Another important security requirement when protecting against passive attacks by

maintaining GK secrecy is to maintain key freshness. Whenever the membership of a group

changes, a GK will be collaboratively regenerated. A GK is always fresh after a membership

change; the chance to use an old key does not exist. In addition, GKs can be changed on

regular or irregular intervals to ensure freshness. The fresher a GK is, the more secure it is

considered.

Our protocol will protect against each of these types of passive attacks, as we will explain

in the balance of this paper.

2.2. TGDH (Tree-based Group Diffie-Hellman) Protocol

Modular exponentiation is an effective but computationally expensive operation that is used to

generate GKs for secure group communication [10]. One of the goals of key management is to

minimize the number of modular exponentiations and the number of protocol rounds. To the

degree that this goal can be achieved, the key management process can be considered efficient.

152 Hong et al.: Design and Performance Analysis of Queue-based Group Diffie-Hellman Protocol (QGDH)

TGDH was proposed to increase the efficiency of the GK generation process by using a tree

structure [12]. As its name indicates, TGDH is built upon the well-known Diffie-Hellman key

exchange protocol [6] and its extension, the Group Diffie-Hellman (GDH) key agreement

protocol [2] that enables provably secure, fully distributed GK generation [10]. In TGDH, the

number of exponentiations for a membership event depends on the current tree structure and

total number of members in the group.

To generate a GK efficiently in TGDH, a group controller must exist to manage the overall

GK generation process. The newest member to join a group always fills the role of group

controller. This member initiates all members into the GK generation process by sending

his/her blinded key to them by using Virtual Synchrony
1
 [7].

2.3. Group Key Generation Process

When the GK generation process begins, each member Mi selects a random private number ri

and computes its blinded key, Mi = g
ri

mod p. All blinded keys must be shared. When the GK

has been generated, then group communication can begin. Whenever membership changes,

the GK must be regenerated.

A series of figures will now be presented to describe GK generation in the TGDH protocol.

The symbols, characters, and abbreviations used in the figures are summarized in Table 1.

Table 1. Definitions

Symbol Definition

n The number of group members

GK Group key

Mi ith group member; i  [1,n]
*

pZ Integer set; *

pZ ={1,2,…,p-1}

p, g A large prime number; p  *

pZ , exponentiation base; g  *

pZ

<l, v> vth node at level l in a tree (where 0≤v≤2l – 1)

K<l, v> <l,v>th node’s random private key

SK<l,v> <l,v>th node’s session key

f(x) gx mod p

BK<l, v> <l,v>th node’s blinded (public) key, f(K<l, v>) = g K<l, v> mod p

Tc(Mi) ith group member’s response time for generating a key pair.

Fig. 1 shows how a Session Key (SK) is generated for a given non-leaf node,<l,v>. The SK is

an intermediate key that is created as part of the GK generation process. The random SK of a

non-leaf node <l, v> in Fig. 1 is generated by:

SK<l, v> = (BK<l+1, 2v>)
K<l+1, 2v+1>

 = (g
K<l+1, 2v>

)
K<l+1, 2v+1>

 mod p (1)

SK<l, v> = (BK<l+1, 2v+1>)
K<l+1, 2v>

 = (g
K<l+1, 2v+1>

)
K<l+1, 2v>

 mod p (2)

SK<l, v> = g
K<l+1, 2v>K<l+1, 2v+1>

 mod p (3)

Equations (1) and (2) contain two exponents, which are the blinded keys of node <l+1,2v>

1 This assumes that the underlying group communication system provides Virtual Synchrony so that all members

correctly compute a group key after any membership events [12]. The Virtual Synchrony protocol provides

guaranteed, in-order message delivery for message streams that involve one sender and potentially multiple

receivers. This guarantee is similar to the guarantees that TCP/IP provides for point-to-point message streams.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 1, Jan 2013 153

Copyright ⓒ 2013 KSII

and node <l+1,2v+1> in Fig. 1 Node <l,v>’s SK is given by (3). Each member in a leaf node

randomly selects a private key and generates a blinded key.

Fig. 1. Node <l,v>’s Session Key Generation Process

Fig. 2. Binary Key Tree

Fig. 2 extends Fig. 1 and demonstrates how the GK is computed in a setting with multiple

group members. An example of the tree-based GK generation process is shown in Fig. 2. Each

node <l, v>’s private key and public key represent K<l, v> and BK<l, v> = g
K<l, v>

mod p

respectively, where g and p are public parameters. Every member holds the secret keys along

the key path. For simplicity, each member knows the blinded keys in the key path. The blinded

keys are the shadowed nodes in Fig. 2.

Fig. 2 shows a tree for 6 members, where M1 can compute SK<2,0>, SK<1,0>, SK<0,0> using the

blinded keys BK<3,0>, BK<3,1>, BK<2,1>, and BK<1,1>.

The final GK is computed as follows:
3,2 3,32,13,0 3,1 2,2))

mod
((

K KK K gK K g g
GK p

g
g

         

 (4)

Note that the GK in equation (4) is computed in terms of all the blinded keys on the key path in

the key generation tree.

<0,0>

<1,0> <1,1>

<2,0>

<2,1>

<2,2>

<2,3>

<3,0>

<3,1>

<3,2>

<3,3>

M3 M4

M6 M5 M2 M1

BK<3,1> BK<3,0> BK<3,2> BK<3,3>

BK<2,1> BK<2,2> SK<2,3>

SK<2,0>

SK<1,0> SK<1,1>

SK<0,0>

<l,v>

<l+1,2v>

<l+1,2v+1>

BK<l+1, 2V>

BK<l+1, 2V+1>

Session Key (node<l,v>)=gK<l+1, 2v>K<l+1, 2v+1> mod p

154 Hong et al.: Design and Performance Analysis of Queue-based Group Diffie-Hellman Protocol (QGDH)

2.4. Shortcomings of TGDH

In spite of the computational advantages of the TGDH protocol, two shortcomings exist. One

shortcoming is that TGDH does not generate GKs based on the relative performance of group

members’ systems. Restated, the TGDH protocol assumes that all members have equal

computing power. In actuality, heterogeneity exists in distributed computing environments in

that some group members have high-computing-power systems while other group members

have lower-computing-power systems. Because secure group communication will not be able

to start until every member has a GK, the assumption of equal computing power means that the

overall performance of the GK-generation process is limited by the lowest-performance group

member.

A second shortcoming is that TGDH uses a tree structure for GK generation. For maximum

performance, a tree must be well-balanced. Because group members leave the GK generation

tree randomly, such trees are either unbalanced and fail to achieve maximum performance or

must be continually re-balanced in a process that generates computational overhead and slows

GK generation [12].

To resolve the first shortcoming for TGDH, the Enhanced TGDH (ETGDH) [8] was

proposed. We now turn to a discussion of the ETGDH.

2.5. ETGDH (Enhanced Tree-Based Group Diffie-Hellman)

The ETGDH protocol addresses the fact that group members often have computer systems

with differing levels of system performance. Performance is measured in terms of the time it

takes a member’s system to respond to the request for a secret key. Because system

performance often differs, there are different roles that should be allocated to certain members

in the group. Because the higher levels of the GK generation tree take more computing time

than the lower levels of the GK generation tree do, members should be sorted so that the

highest-performance member’s system begins the GK-generation process.

Leaf-level computation is the first step in the process of generating the GK – and in the process

of determining the relative performance of group members’ systems. Leaf-level computation

is depicted in Fig. 3. Leaf nodes represent members (M1, M2, M3, M4, M5, M6, M7, and M8). The

sibling nodes in the tree are <M1, M2>, <M3, M4>, <M5, M6>, and <M7, M8>. Each member Mi

generates a secret key K<l, v> and generates a blinded key BK<l, v>= g
K<l, v>

mod p. The response

time for generating the keys is measured, and then each member starts using the

Diffie-Hellman key exchange. For example, M1 and M2 exchange the values M1 (g
K<3,0>

 mod p)

and M2 (g
K<3,1>

mod p) to generate sub-group key g
K<3,0>K<3,1>

 mod p.

Fig. 3. Key Generation Tree

<0,0>

<1,0> <1,1>

<2,0> <2,1> <2,2> <2,3>

M1

<3,0> <3,1> <3,2> <3,3> <3,4> <3,5> <3,6> <3,7>

M2 M3 M4 M5 M7 M6 M8

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 1, Jan 2013 155

Copyright ⓒ 2013 KSII

After completing the leaf level computation, a session key in the next level is ready to be

generated. The group controller (the last member to join) determines which member goes to

the next level. This determination is made by comparing each member’s response times,

Tc(Mi). Assuming that the members who use higher-performance systems are M2, M4, M6, and

M8, then each of these members will advance to the next level of the key generation process.

The rest of the members will wait until the processes have been completed. The pairs at the

next level will be < M2, M4> and <M6, M8>. The highest-performance members, <M4, M8>,

generate the upper level session key. Finally, the highest performance member, M8, generates

a final GK and distributes it to the rest of the members. Lower-performance group members do

not participate in the generation of the GK. Each of the steps in the key generation process that

is depicted in Fig. 3 are explicitly listed in Table 2.

Table 2. Key Generation Processes

Key node Member Key Computation Process

<3,0> M1 gK<3,0> mod p

<3,1> M2 g K<3,1> mod p
<3,2> M3 g K<3,2> mod p

<3,3> M4 g K<3,3> mod p

<3,4> M5 g K<3,4> mod p
<3,5> M6 g K<3,5> mod p

<3,6> M7 g K<3,6> mod p

<3,7> M8 g K<3,7> mod p

<2,0> M2 g<3,0><3,1> =
3,0 3,1

mod
K K

g p
   

<2,1> M4 g<3,2><3,3> = 3,2 3,3
mod

K K
g p

   

<2,2> M6 g<3,4><3,5> =
3,4 3,5

mod
K K

g p
   

<2,3> M8 g<3,6><3,7> =
3,6 3,7

mod
K K

g p
   

<1,0> M4 g<2,0><2,1> =
3,0 3,1 3,2 3,3

mod
K K K K

g g
g p

       

<1,1> M8 g<2,2><2,3> =
3,4 3,5 3,6 3,7

mod
K K K K

g g
g p

       

<0,0> M8 g<1,0><1,1> =

3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7

mod
K K K K K K K K

g g g gg g
g p

               

Efficiency gains in GK generation over TGDH can be realized if GKs are generated by a

protocol that: (1) determines which members are high-performance and which are

low-performance, (2) prioritizes the generation of GKs for high-performance users, and (3)

generates those GKs in descending order from the highest-performance member to the lowest.

ETGDH is able to realize these efficiency gains, but it cannot resolve the second shortcoming

of TGDH that we noted earlier, the tree maintenance problem. To reiterate, the key tree must

be rebalanced every time a GK is generated after group membership changes. This

rebalancing is vital to achieve maximum performance. Because ETGDH leaves the

shortcoming of tree maintenance unaddressed, we also note that efficiency gains in GK

generation can be realized when a protocol (4) uses a structure that is more efficient than the

tree-based structure. Our proposed QGDH protocol does just this, providing secure

communication more efficiently than any other conventional efficient GK generation protocol.

3. Queue-Based Group Diffie-Hellman

The QGDH protocol that we propose duplicates the efficiency gains of ETGDH by (1)

determining which members are high-performance and which are low-performance, (2)

156 Hong et al.: Design and Performance Analysis of Queue-based Group Diffie-Hellman Protocol (QGDH)

prioritizing the generation of GKs for high-performance members, and (3) generating those

GKs in descending order from the highest-performance member to the lowest. In addition, a

queue structure is used to determine high- and low-performance members, yielding efficiency

gains over tree-based protocols in the generation of GKs.

QGDH, as its name indicates, uses a queue structure rather than a tree structure. When

group membership changes and a new GK is required, blinded keys are computed and stored

in a blinded key queue (BKQ) on the group controller’s system. The highest-performance

member’s key is stored at the front of the queue and the lowest-performing member’s key is

stored at the back of the queue (with the remaining members’ keys stored somewhere in

between, depending on the performance of the member’s system and thus, on the time of the

key’s arrival in the BKQ). This arrangement is advantageous because the first element in the

queue (which has been received from the highest-performance member) will be the first one

processed. This process avoids delays in generating a GK.

An additional benefit of the queue structure can be seen when comparing it to a tree

structure. Queues have a simple linear data structure and can be changed when group

members join or leave with minimal computational overheard. In contrast, trees must

maintain a balanced structure to achieve and maintain maximum performance. Thus, an

advantage of a queue structure over a tree structure is that a queue structure provides a useful

way to determine high-performance members, one that avoids the additional computational

overhead needed to maintain balance in a key tree.

3.1. Reducing Overhead Costs in GK Management

There are two overhead costs in a GK management protocol: the first is computation cost, and

the second is communication cost. Computation and communication costs are important

because they impact the scalability of GK management [10]. Communication cost is relatively

small and constant (often using a 3-round protocol [9]). Computation costs, in contrast,

dominate the performance of GK management [10] because those costs depend directly on

group size and because GK generation requires logarithmically-many exponentiations. All

members’ keys must have a contribution to calculate a GK that ensures GK secrecy [4].

Therefore, QGDH focuses on reducing computation costs by assessing the computing power

of group members’ systems.

In general, the computing power of a member’s system depends on CPU capacity, main

memory size, and the type of operating system. It is, however, impossible to retrieve another

machine’s system information and evaluate all of its individual factors by normal network

operations due to security reasons. The only way to evaluate each machine’s performance is to

measure the total response time.

To determine high performance members efficiently, a group controller is introduced in

QGDH. The group controller is the last member to join the group. The group controller also is

responsible for controlling the overall group key generation process by assigning members to

the proper positions in the key generation whenever changes occur in the group membership.

The role of the group controller in a dynamic peer group communication can potentially

improve the group key generation process. He does not have any privilege. The group

controller requires all members to compute their public keys and store them into a queue

structure on the group controller in the order of arrival. The queue is a First-In-First-Out

(FIFO) queue where the high performance members’ keys are always stored into the front

positions in the queue. The benefit of using a FIFO queue is that QGDH provides an efficient

way to determine high performance members’ machines without the additional overhead of

actively comparing each member’s response time [8].

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 1, Jan 2013 157

Copyright ⓒ 2013 KSII

3.2. How QGDH Works

The QGDH protocol works in the following way. The group controller broadcasts a request to

all members to generate a blinded key. The group controller receives all blinded keys and

stores them into its’ BKQ in the order of their arrival, with the higher-performance members’

blinded keys stored in the front of the BKQ and the lower-performance members’ blinded keys

stored in the rear of the BKQ.

Fig. 4. Blind Key Queue Structure

The group controller then requests members who are in the front half of the BKQ (the

higher-performance members) to compute their Diffie-Hellman key exchange with those

blinded keys and store them in the next level of the BKQ in order of arrival. Following the

determination of each level, the group controller collects and stores all computed session keys

in the BKQ in Fig. 4. The highest-performance member’s key is always stored into the first

spot in each level, the second highest performance member’s key is stored into the second spot,

and so on. The keys in darker areas in Fig. 4 are determined as faster member’s keys. The

BKQ automatically assigns each pair of keys. For example, the first spot’s blinded key will be

computed with the last spot’s blinded key (g
n4n1

); the second spot’s blinded key will be

computed with the second-to-last spot’s blinded key (g
n3n2

).

If group size is odd, then one of the member’s keys will not be able to calculate with other

keys. In such a situation, the orphan key will be shifted to the front areas in the next level of

the BKQ and will wait until the other session keys are completed and stored in the BKQ. After

all session keys are stored in the BKQ, the group controller will assign new session key pairs

based on their locations in the current BKQ. The key in the front of the BKQ is computed with

the key in the rear of the BKQ, and the orphan key will be assigned with the key that is located

at the rear of the BKQ at this time. Whenever an orphan key is present, it will be shifted to the

front area of the next level of the BKQ and wait until a corresponding key is stored in the rear

of the BKQ. After continuing this process, only two session keys will remain and the final GK

will be computed.

The blinded keys in the rear half of the BKQ are regarded as the low-performance members’

keys and these are not used to compute intermediate keys. After the low-performance

members have provided their blinded keys to the high-performance members, the group

158 Hong et al.: Design and Performance Analysis of Queue-based Group Diffie-Hellman Protocol (QGDH)

controller only allows the high-performance members who have blinded keys to continue to

participate in the computation of the GK. Thus, only high-performance members are selected

to participate in the GK generation process and the QGDH protocol avoids the unnecessary

delays involved in waiting for the completion of other members’ GKs. Furthermore, QGDH

does not require the maintenance of a balanced key tree (as in TGDH).

There are two additional benefits of QGDH. First, since all members participate in

generating a GK, that GK will be cryptographically stronger and more reliable than one

generated in a protocol that uses only a single member’s key. Second, all messages in our

protocol are digitally signed by the sender’s private key using Public Key Infrastructure (PKI).

Certificates include the version, serial number, the algorithm ID, the name of the issuer, the

name of the sender, (or, equivalently, the signer), the certificate signature algorithm (RSA),

and a time stamp. Thus, a more trusted certificate and a more secure GK are additional

advantages the QGDH protocol.

3.3. Membership Operations QGDH Supports

QGDH supports the following four operations: join, leave, partition, and merge.

Join Operation - Whenever a new member joins a group communication, the group controller

broadcasts a control message to other members to generate a new blinded key and then store

all the blinded keys from members in the BKQ in the order of arrival. The group controller

determines high-performance members who will generate a session key in the next level of the

GK generation process by checking the location of a blinded key in the BKQ. The

high-performance members’ blinded keys are always automatically stored in the front of the

BKQ. The major steps in the join operation are shown in Table 3.

Table 3. Join Operation

Step Description

Step 1: When a new member joins, the group controller broadcasts a

control message to all members.

Step 2: Every member generates a blinded key and sends it back to

the group controller.

Step 3: The group controller

 receives all blinded keys and stores them into the

BKQ in the order of arrival

 selects a next-level key pair for GK generation by

matching high-performance members’ and

low-performance members’ blinded keys

 broadcasts to only members who are located at the

front of the BKQ

Step 4: Approved members compute a key pair and send it back to

the group controller

Step 5: The group controller

 repeats Step 3 until the final GK has been generated

 sends the final GK to all members when it has been

generated

Leave Operation - As a member leaves the group, the GK must be recomputed. When an old

member leaves, the group controller broadcasts a message to other members to generate a

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 1, Jan 2013 159

Copyright ⓒ 2013 KSII

blinded key and then receives all blinded keys into the BKQ. Major steps are shown in Table

4.

Table 4. Leave Operation

Step Description

Step 1: When an old member leaves, the group controller broadcasts a control

message to other members to generate a blinded key for group key secrecy.

Step 2: Every member generates a blinded key and sends it back to the group
controller

Step 3: The group controller

 receives all blinded keys and stores them into the BKQ in order of
arrival

 selects a next-level key pair for GK generation by matching

high-performance members’ and low-performance members’ blinded
keys

 broadcasts only to members who are located at the front of the BKQ

Step 4: Approved members compute a key pair and send it back to the group
controller

Step 5: The group controller

 repeats Step 3 until the final GK has been generated

 sends the final GK to all members when it has been generated

Partition Operation - In contrast to the ETGDH, there is no subgroup controller in QGDH. A

partitioned group is defined in QGDH as members that are disconnected from the group

controller. The partitioned group will not be able to communicate with other partitioned group

members because it does not have any subgroup controllers to reconnect them. The group

controller uses polling to check members’ networking status. If the group controller detects a

member who is unreachable, the partition operation will be implemented until the

disconnected member’s status is resolved. In such a case, a GK must be regenerated, and the

rest of the procedures are the same as join and leave operations. The major steps are shown in

Table 5.

Table 5. Partition Operation

Step Description

Step 1: When a group controller detects unreachable members by using polling, the

group controller broadcasts a control message to other members to generate

a blinded key for group key secrecy.

Step 2: Every member generates a blinded key and sends it back to the group
controller

Step 3: The group controller

 receives all blinded keys and stores them into the BKQ in order of
arrival

 selects a key pair at the next level for GK generation by matching
high-performance members’ and low-performance members’ blinded

keys

 broadcasts only to members who are located at the front of the BKQ

Step 4: Approved members compute a key pair and send it back to the group

controller

Step 5: The group controller

 repeats Step 3 until the final GK has been generated

 sends the final GK to all members when it has been generated

Merge Operation - In QGDH neither a subgroup controller nor a partitioned group exists.

Only unreachable members exist. Therefore, the merge operation is not necessary in QGDH.

The merge operation is the same as the join operation, and the unreachable members must

160 Hong et al.: Design and Performance Analysis of Queue-based Group Diffie-Hellman Protocol (QGDH)

rejoin the group to communicate with other members. The major steps are shown in Table 6

(identical to Table 3 which shows the Join Operation).

Table 6. Merge Operation

Step Description

Step 1: When a new member joins, the group controller broadcasts a control
message to all members.

Step 2: Every member generates a blinded key and sends it back to the group

controller.

Step 3: The group controller

 receives all blinded keys and stores them into the BKQ in the order of
arrival

 selects a next-level key pair for GK generation by matching
high-performance members’ and low-performance members’ blinded

keys

 broadcasts to only members who are located at the front of the BKQ

Step 4: Approved members compute a key pair and send it back to the group

controller

Step 5: The group controller

 repeats Step 3 until the final GK has been generated

 sends the final GK to all members when it has been generated

Summary - the QGDH protocol provides an efficient method to determine high performance

members. It does so by storing the blinded keys’ in the BKQ in the order they are received.

4. Experiments and Performance Comparisons

This section demonstrates how low-performance group members negatively affect the overall

performance of the GK generation process and how the QGDH protocol can address this

problem. We show first, that the performance of group members’ computer systems can affect

the efficiency of GK generation. Then, we show that QGDH is more efficient than alternate

approaches, including TGDH and ETGDH.

4.1. Comparing GK Protocols on Different Systems

To investigate the performance of group members’ computer systems, four different machines

with different operating systems (Windows XP, Linux, Unix, and Macintosh) were selected

from a given network. The Windows XP machine is a Pentium 4 (2.8 GHz, 1 GB of RAM), the

Linux (SuSE Linux 9.1) is a Pentium 4 (1.3 GHz, 480 MB of RAM), the Unix (Sun Solaris 9)

is a SUN UltraSPARC (650 MHz, 2 GB RAM), and the Macintosh is a PowerPC G5 (Dual 2.7

GHz, 4 GB RAM). Recall that is not necessary for the group controller to actually detect the

system resources in terms of processing power and RAM. Performance is measured solely in

terms of the time it takes the system to respond to the group controller with the BK. The

experimental results clearly show that the low-performance members’ systems are slower at

generating GKs than are the high-performance members’ systems (see Fig. 5 and Table 7).

This indicates that GK generation processes can be improved by taking into account the

performance of group members’ computer systems.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 1, Jan 2013 161

Copyright ⓒ 2013 KSII

 Group Key Generation Level

Fig. 5. Performance Analysis for Group Key Generation Process

Table 7. Average response times in each group key generation level (msec)

Operating

Systems
Unix Linux

Windows

XP
Mac OS

CPU Clock

Pulse

650 M

Hz

1.3 G

Hz

2.8 G Hz Dual 2.7

GHz*

Level 1 375.3 83.4 39.1 21.4

Level 2 710.5 148.1 73.4 37.9

Level 3 1,074.2 215.7 117.1 57.4

Level 4 1,441.9 284.0 145.3 74.3

Level 5 1,797.7 349.9 181.2 93.3

Level 6 2,166.8 418.1 220.3 134.4

Level 7 2,527.5 487.0 262.5 163.7

Average 1,442.0 283.7 148.4 83.2
* According to SPEC CPU 2000, the performance of the dual 2.7 GHz CPU is 1.9 times faster than a single 3.0 GHz CPU. Thus, the

computing power of the dual 2.7 GHz CPU is theoretically equal to the computing power of a single 5.2G Hz CPU.

To contrast QGDH with TGDH, ETGDH, and BD, we compare and plot the overall

performance of the four protocols. Test results show to the average response times of

generating the GK when a new member joins a group (including computation and

communication overhead). The experiment consisted of the same four machines mentioned in

the previous paragraph. At each level of GK generation (shown in Table 7), the QGDH

protocol generates GKs in a shorter amount of time than either TGDH, ETGDH or BD (see

Fig. 6). Recall that QGDH determines high-performance members at each level to optimize

GK generation (and guard against delays caused by network faults, system failures, or other

problems during the GK generation process). Thus, these results indicate that QGDH presents

a way to generate GKs more efficiently than a process that does not account for the

performance of group members’ systems (TGDH). These results also indicate that QGDH

162 Hong et al.: Design and Performance Analysis of Queue-based Group Diffie-Hellman Protocol (QGDH)

presents a way to generate GKs more efficiently than tree-based protocols such as ETGDH.

Due to a high latency on generating BD’s key as O(n
2
) [12], BD records the wrost performance

among other protocols, and the difference between QGDH and ETGDH is not generated.

Fig. 6. Total Response Times for Generating a Group Key

4.2. Evaluating Membership Operations of Different GK Protocols

To verify that the proposed protocols are efficient, measurements of the time to

complete the GK generation process were taken. The response times are measured by

the times elapsed between invocation and completion. The overall performance of

each machine is determined by the total response time (TR) in terms of computing

power and load (TC), tree maintenance or queuing time (Tm), and network latency (TN).

TC refers to the computing power which is a constant factor in terms of the capacity of

the CPU, clock, main memory size, hard disk size, etc. Tm is the overhead involved in

maintaining the key tree or the queuing structure. TN is the time spent exchanging

messages.

TR = TC + Tm + TN (4)

Communication and computation costs for each membership operation (join, leave,

merge, and partition) are analyzed in terms of TR. Other variables to be considered

include the number of rounds and the communication costs. QGDH was compared to

TGDH and ETGDH. The number of current groups, merging groups, leaving members,

and partitions are denoted by n, m, k (m ≥ k) and p, respectively. The height of the key

tree constructed by the TGDH protocol is h. Table 8 shows the communication and

computation costs of these four operations [1].

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 1, Jan 2013 163

Copyright ⓒ 2013 KSII

TABLE 8. Communication and computation costs summary

Protocol
Communication Computation Properties

Rounds Messages Exponentiations

QGDH

Join 2 2n - 2 3(log2n) / 2 QGDH has developed the disadvantage of

ETGDH by using queue structure, which the

key tree must be balanced. Otherwise, the
overall performance wouldn’t be O(log n)

Leave 1 2n - 2 3(log2n) / 2

Partition 1 2n - 2 3(log2n)

Merge 2 2n - 2 3(log2n) / 2

ETGD
H

Join 2 2n - 2 3h / 2 ETGDH has been developed to overcome the

TGDH’s disadvantage which the overall
performance depends on the slowest

member’s performance. ETGDH allows

higher performance members who will be
able to join in key generating process, so it

can avoid unnecessary delay.

Leave 1 2n - 2 3h / 2

Partition 1 2n - 2 3h

Merge 2 2n - 2 3h / 2

BD

Join 2 2n + 2
3 The main idea in BD is to distribute the

computation among members, such that each

member performs only three exponentiations.

This is achieved by using two communication
rounds, each of them consisting of n

broadcasts. BD requires O(n2) modular

multiplications, and BD’s group key is
K=gx1x2+x2x3+…xn-1xnmod p (p is a exponential

base)

Leave
2 2n - 2 3

Partition
2 2n + 2m 3

Merge
2 2n – 2p 3

TGDH

Join 2 3 3h / 2 TGDH used a tree structure to reduce
complexity of group key. However, every

member needs to join in key generating

process, so the overall performance depends
on the slowest member’s performance.

Leave 1 1 3h / 2

Partition min(log2 p, h) 2h 3h

Merge log2k + 1 2k 3h / 2

BD [16] has n - 1 modular exponentiations with a small exponent. Unfortunately, n - 1 such

exponentiations can be expensive when n is large. For example, BD requires O(n2) 1024-bit

modular multiplications, if modular exponentiation is implemented with the

square-and-multiply algorithm. BD is the most expensive protocol in terms of communication

in leave. The cost order among others is determined strictly by the computation cost, since

they all have the same communication cost (one round consisting of one message).

The rounds in Table 8 correspond to how many broadcasts are used to send and receive

blinded keys among each member. In ETGDH and QGDH as a new member joins, this new

member must send his or her blinded key to all members (round 1). After sending this key, the

new member needs to obtain all other members’ blinded keys. Thus, all current members send

their blinded keys back to the new member in parallel (round 2). Therefore, two rounds are

required in the join and merge events. There is only one round in the leave event because a

leaving member simply reports his or her leaving to all other members by using one broadcast.

5. Conclusion

The QGDH protocol, a GK generation protocol that uses a queue structure to determine

high-performance group members and prioritize the generation of their GKs, offers a way to

overcome the limitations of the TGDH protocol, a protocol that assumes that all members have

equal computing power. In the QGDH model, the problem of a low-performance member

possibly slowing down the GK generation process is mitigated. The QGDH protocol is more

efficient than both the TGDH and ETGDH protocols across a number of computer systems

and for groups of various sizes. Therefore, the QGDH protocol represents an improvement in

164 Hong et al.: Design and Performance Analysis of Queue-based Group Diffie-Hellman Protocol (QGDH)

efficiency over existing approaches to secret key cryptography. This and other advances have

the potential to reduce computational overhead and address the challenge of maximizing

efficiency in secure group communication.

References

[1] Amir, Y., Kim, Y., Nita-Rotaru, C., and Tsudik, G. “On the Performance of Group Key Agreement

Protocols”, ACM trans. on information and system security, vol. 7, no. 3, pp. 457- 488, 2004.

Article (CrossRef Link)

[2] Bresson, E., Chevassut, O. “Provably authenticated group Diffie-Hellman key exchange”, In Proc.

of the 8th ACM CCS’01, 2001. Article (CrossRef Link)

[3] Tripathi, S.; Biswas, G.P.; , "Design of efficient ternary-tree based group key agreement protocol

for dynamic groups," Communication Systems and Networks and Workshops, 2009. COMSNETS

2009. First International , vol., no., pp.1-6, 5-10 Jan. 2009. Article (CrossRef Link)

[4] Choie, Y., Jeong, E., and Lee, E. "Efficient identity-based authenticated key agreement protocol

from pairings," Applied Mathematics and Computation, vol. 162, no. 1, pp. 179-188, 2005.

Article (CrossRef Link).

[5] Kaufman, C., Perlman, R, Speciner, M., “Network security: private communication in a public

world, second edition,” Prentice Hall Press Upper Saddle River, 2002. Article (CrossRef Link)

[6] Diffie W. and Hellman, M. E. "New directions in cryptography," IEEE Transactions on

Information Theory, vol. 22, no. 6, pp. 644-654, 1976. Article (CrossRef Link).

[7] Fekete, A., Lynch, N., and Shvartsman, A. “Specifying and using a partitionable group

communication service,” In ACM PODC ’97, 1997. Article (CrossRef Link)

[8] Hong, S. and Lopez-Benitez, N. "Enhanced Group Key Generation Algorithm," 10th IEEE/IFIP

Network Operations and Management Symposium, 1-4, 2006. Article (CrossRef Link).

[9] Katz, J. and Yung, M. "Scalable Protocols for Authenticated Group Key Exchange," Journal of

Cryptology, vol. 20, no. 1, pp. 85-113, 2006. Article (CrossRef Link).

[10] Kim, Y. Group key agreement: theory and practice, Ph.D. dissertation, 2002. Article (CrossRef

Link)

[11] Kim, Y.; Perrig, A.; Tsudik, G.; , "Group key agreement efficient in communication," Computers,

IEEE Transactions on , vol.53, no.7, pp. 905- 921, July 2004. Article (CrossRef Link)

[12] Kim, Y., Perrig, A., and Tsudik, G. "Tree-based group key agreement," ACM Transaction on

Information and System Security, 2004. Article (CrossRef Link).

[13] Lenstra, A. K. and Verheul, E. R. “Selecting cryptographic key sizes,” Journal of Cryptology, vol.

14, no. 4, pp. 255-293, 2001. Article (CrossRef Link)

[14] Steiner, M., Tsudik, G., and Waidner, M. "Key agreement in dynamic peer groups," IEEE

Transactions on Parallel and Distributed Systems, vol. 11, no. 8, pp. 769-780, 2000. Article

(CrossRef Link).

[15] Wong, C., Gouda, M., and Lam S. Secure group communications using key graphs, IEEE / ACM

Transactions on Networking, vol. 8, no. 1, pp. 16-30, 2000. Article (CrossRef Link).

[16] Mike Burmester and Yvo Desmedt, “A secure and efficient conference key distribution system”,

Advances in Cryptology – EUROCRYPT ’94, number 950 in Lecture Notes in Computer Science.

International Association for Cryptologic Research, Springer-Verlag, Berlin Germany, 1995.

Article (CrossRef Link)

http://dx.doi.org/10.1145/1015040.1015045
http://dx.doi.org/10.1145/501983.502018
http://dx.doi.org/doi:%2010.1109/COMSNETS.2009.4808834
http://dx.doi.org/10.1016/j.amc.2003.12.092
http://dl.acm.org/citation.cfm?id=1408349
http://dx.doi.org/10.1109/TIT.1976.1055638
http://dx.doi.org/10.1145/377769.377776
http://dx.doi.org/10.1145/377769.377776
http://dx.doi.org/10.1109/NOMS.2006.1687639
http://dx.doi.org/10.1007/s00145-006-0361-5
http://dl.acm.org/citation.cfm?id=936905
http://dl.acm.org/citation.cfm?id=936905
http://dx.doi.org/doi:%2010.1109/TC.2004.31
http://dx.doi.org/10.1145/984334.984337
http://dx.doi.org/10.1007/s00145-001-0009-4
http://dx.doi.org/10.1109/71.877936
http://dx.doi.org/10.1109/71.877936
http://dx.doi.org/10.1109/90.836475
http://dx.doi.org/10.1007/BFb0053443

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 1, Jan 2013 165

Copyright ⓒ 2013 KSII

Sunghyuck Hong received the Ph.D. degree from Texas Tech University in August,

2007 major in Computer Science. Currently, he works at Baekseok University as an

assistant professor. He is a member of editorial board in the Journal of Korean

Society for Internet Information (KSII) Transactions on Internet and Information

Systems. His current research interests include Secure Cloud Computing, Secure

Wireless Sensor Networks, Key Management, and Networks Security

Sungjin Lee received the Ph.D. degree from Korea Advanced Institute of Science

and Technology (KAIST) in August, 2000 major in information and

communication. He is an advisor of supreme public prosecutor's Office digital

investigation and advisory board of the National Institute of Scientific Investigation.

Currently, he works at Baekseok University as an associate professor. His research

area is digital forensic.

