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Abstract 
 

Current group key agreement protocols, which are often tree-based, have unnecessary delays 

that are caused when members with low-performance computer systems join a group key 

computation process.  These delays are caused by the computations necessary to balance a key 

tree after membership changes. An alternate approach to group key generation that reduces 

delays is the dynamic prioritizing mechanism of queue-based group key generation. We 

propose an efficient group key agreement protocol and present the results of performance 

evaluation tests of this protocol.  The queue-based approach that we propose is scalable and 

requires less computational overhead than conventional tree-based protocols. 
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1. Introduction 

Group communication on the Internet is exploding in popularity.  Videoconferencing, 

enterprise IM, desktop sharing, and numerous forms of e-commerce are but a few examples of 

the ways in which the Internet is being used for business.  The growing use of group 

communication has highlighted the need for advances in security.  There are several 

approaches to securing user identities and other information transmitted over the Internet.  One 

of the foundations of secure communication is key management, a building block for 

encryption, authentication, access control, and authorization [10]. Key management and 

member authentication processes take place at the beginning of group communication.  To 

establish a secure group, all members are authenticated, then generate and use a common 

group key (GK) to encrypt and decrypt messages [2].  

To achieve a high level of security, the GK should be changed after any member joins or 

leaves so that new members have no access to previous communications and former group 

members have no access to current communications [15]. One problem inherent in this process 

is that the computation of GKs often takes a significant amount of time – even when a group’s 

size is relatively small [14].  To address this problem, a recent focus in key management is the 

efficient generation of GKs [3][12][14].  It is this need for efficient key generation that we 

address. 

We present an innovative approach to GK generation, the Queue-based Group 

Diffie-Hellman protocol (QGDH).  QGDH provides a queue-based divide and conquer 

algorithm that is more efficient than the Tree-based Group Diffie-Hellman (TGDH) protocol 

and Enhanced Tree-based Group Diffie-Hellman (ETGDH) protocol [8], both of which use a 

key tree in the GK generation process [12].  Our goal is to provide an efficient GK agreement 

protocol that does not require a high level of computational overhead to maintain secure 

communication. 

This paper is organized as follows. In Section 2, we describe how GKs ensure security of 

group communications, we introduce conventional GK generation protocols, including TGDH 

and ETGDH, and we highlight the limitations of these existing protocols. In Section 3, we 

present QGDH, our protocol for GK generation.  We also describe how our protocol executes 

the join, leave, partition, and merge operations needed to maintain secure communication. 

Then, in Section 4, we test the performance of QGDH in a series of experiments. QGDH is 

shown to outperform TGDH and ETGDH in multiple tasks and on multiple types of computer 

systems. Our conclusions are presented in Section 5.   

2. Group Key Agreement Protocols 

2.1. Group Key Management 

Group key (GK) management focuses on how to efficiently generate a GK to enable and 

maintain secure communication.  In this process, there are four requirements to ensure security: 

(1) GK secrecy, (2) backward secrecy, (3) forward secrecy, and (4) key independence [10].  

Each of these security requirements are defined as follows.   

Assume that a GK is changed m times and the sequence of successive GKs is K = {K0, K1,…, 

Km-1, Km}. 

1. GK Secrecy guarantees that it is computationally infeasible for a passive adversary to 

discover any GK Ki ∈ K for all i. 
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2. Forward Secrecy guarantees that a passive adversary who knows a contiguous subset of 

old GKs (say {K0,K1,…,Ki}) cannot discover any subsequent GK Kj for all i and j where j > 

i. 

3. Backward Secrecy guarantees that a passive adversary who knows a contiguous subset of 

GKs (say {Ki,Ki+1,…,Kj}) cannot discover preceding GK Kl for all l, j, k where l < i < j. 

4. Key Independence guarantees that a passive adversary who knows a proper subset of GKs 

Ksubset ⊂ K cannot discover any other GK Ki ∈ (K – Ksubset ). 

Before examining GK secrecy, possible security attacks must be defined.  

There are two types of security attacks in group communication: active attacks and passive 

attacks. Active attacks involve injecting, deleting, delaying, and modifying protocol messages. 

For the purposes of this paper, we place protecting against active attacks outside of our scope. 

We assume the security of network protocols such as Public Key Infrastructure (PKI) and now 

turn our focus to the topic of protection from passive attacks.   

When considering passive attacks, eavesdropping is the most significant possible threat.  

Efficient generation of GKs that meet the four requirements for security described above 

addresses the possible threat of eavesdropping.  Secure GKs prevent attackers from 

discovering the GK in order to decrypt the message. 

A GK is a common secret key which means that one key can encrypt and decrypt the 

messages during communication, (i.e., it is a symmetric cipher). When using symmetric 

ciphers, the most well known passive attack is a brute-force attack [5], the process of 

enumerating all of the possible keys until the proper key is found that decrypts a given cipher 

text into the correct plain text. All symmetric encryption algorithms will eventually fall to 

brute-force attacks if enough time is allowed.   

 In a brute-force attack, the expected number of trials before the correct key is found is 

equal to half the size of the key space (the expected number of trials is the average of the 

best-case and worst-case number of trials to find the right key). Symmetric ciphers with keys 

of 64 bits or less are considered vulnerable to brute force attacks [5]. Therefore, key size must 

be great enough to prevent such an attack on symmetric ciphers.  If there are enough possible 

keys to slow down a brute-force attack, then the algorithm can be considered secure [5].  GKs 

that are 1,024 bit-long numbers are considered to be secure in current technology [13].  A 

brute-force attack would need 2
1,024/2

 attempts to find the GK; such an approach is considered 

computationally infeasible. A cryptographic protocol is said to be provably secure if it can be 

shown to be essentially as difficult as solving a well-known and typically number-theoretic 

problem, such as the computation of discrete logarithms. 

Another important security requirement when protecting against passive attacks by 

maintaining GK secrecy is to maintain key freshness. Whenever the membership of a group 

changes, a GK will be collaboratively regenerated. A GK is always fresh after a membership 

change; the chance to use an old key does not exist.  In addition, GKs can be changed on 

regular or irregular intervals to ensure freshness. The fresher a GK is, the more secure it is 

considered.  

Our protocol will protect against each of these types of passive attacks, as we will explain 

in the balance of this paper. 

2.2. TGDH (Tree-based Group Diffie-Hellman) Protocol 

Modular exponentiation is an effective but computationally expensive operation that is used to 

generate GKs for secure group communication [10]. One of the goals of key management is to 

minimize the number of modular exponentiations and the number of protocol rounds.  To the 

degree that this goal can be achieved, the key management process can be considered efficient.  
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TGDH was proposed to increase the efficiency of the GK generation process by using a tree 

structure [12]. As its name indicates, TGDH is built upon the well-known Diffie-Hellman key 

exchange protocol [6] and its extension, the Group Diffie-Hellman (GDH) key agreement 

protocol [2] that enables provably secure, fully distributed GK generation [10]. In TGDH, the 

number of exponentiations for a membership event depends on the current tree structure and 

total number of members in the group.  

To generate a GK efficiently in TGDH, a group controller must exist to manage the overall 

GK generation process. The newest member to join a group always fills the role of group 

controller. This member initiates all members into the GK generation process by sending 

his/her blinded key to them by using Virtual Synchrony
1
 [7]. 

2.3. Group Key Generation Process 

When the GK generation process begins, each member Mi selects a random private number ri 

and computes its blinded key, Mi = g
ri 

mod p. All blinded keys must be shared. When the GK 

has been generated, then group communication can begin. Whenever membership changes, 

the GK must be regenerated.  

A series of figures will now be presented to describe GK generation in the TGDH protocol. 

The symbols, characters, and abbreviations used in the figures are summarized in Table 1. 

Table 1. Definitions 

Symbol Definition 

n The number of group members 

GK Group key 

Mi ith group member; i  [1,n] 
*

pZ  Integer set; *

pZ ={1,2,…,p-1} 

p, g A large prime number; p  *

pZ , exponentiation base; g  *

pZ  

<l, v> vth node at level l in a tree (where 0≤v≤2l – 1) 

K<l, v> <l,v>th node’s random private key    

SK<l,v> <l,v>th node’s session key 

f(x) gx mod p  

BK<l, v> <l,v>th node’s blinded (public) key,  f(K<l, v>) = g K<l, v> mod p  

Tc(Mi) ith group member’s response time for generating a key pair.  

 

Fig. 1 shows how a Session Key (SK) is generated for a given non-leaf node,<l,v>.  The SK is 

an intermediate key that is created as part of the GK generation process. The random SK of a 

non-leaf node <l, v> in Fig. 1 is generated by:  

 

SK<l, v> = (BK<l+1, 2v>)
K<l+1, 2v+1>

 = (g
K<l+1, 2v>

)
K<l+1, 2v+1>

 mod p                       (1) 

   

SK<l, v> = (BK<l+1, 2v+1>)
K<l+1, 2v>

 = (g
K<l+1, 2v+1>

)
K<l+1, 2v>

 mod p                       (2) 

 

SK<l, v> = g
K<l+1, 2v>K<l+1, 2v+1>

 mod p                                          (3) 

 

Equations (1) and (2) contain two exponents, which are the blinded keys of node <l+1,2v> 

                                                           
1 This assumes that the underlying group communication system provides Virtual Synchrony so that all members 

correctly compute a group key after any membership events [12]. The Virtual Synchrony protocol provides 

guaranteed, in-order message delivery for message streams that involve one sender and potentially multiple 

receivers. This guarantee is similar to the guarantees that TCP/IP provides for point-to-point message streams. 
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and node <l+1,2v+1> in Fig. 1 Node <l,v>’s SK is given by (3). Each member in a leaf node 

randomly selects a private key and generates a blinded key. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Node <l,v>’s Session Key Generation Process 

 

 

 

Fig. 2. Binary Key Tree 

 

Fig. 2 extends Fig. 1 and demonstrates how the GK is computed in a setting with multiple 

group members. An example of the tree-based GK generation process is shown in Fig. 2. Each 

node <l, v>’s private key and public key represent K<l, v> and BK<l, v> = g
K<l, v> 

mod p 

respectively, where g and p are public parameters. Every member holds the secret keys along 

the key path. For simplicity, each member knows the blinded keys in the key path. The blinded 

keys are the shadowed nodes in Fig. 2.  

Fig. 2 shows a tree for 6 members, where M1 can compute SK<2,0>, SK<1,0>, SK<0,0> using the 

blinded keys BK<3,0>, BK<3,1>, BK<2,1>, and BK<1,1>. 

The final GK is computed as follows: 
3,2 3,32,13,0 3,1 2,2) )

mod
((

K KK K gK K g g
GK p

g
g

         

                     (4) 

Note that the GK in equation (4) is computed in terms of all the blinded keys on the key path in 

the key generation tree.  
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<1,0> <1,1> 

 

<2,0> 

 
<2,1> 

 

<2,2> 

 
<2,3> 

 

<3,0> 

 

<3,1> 

 
<3,2> 

 

<3,3> 

 

M3 M4 

M6 M5 M2 M1 

BK<3,1> BK<3,0> BK<3,2> BK<3,3> 

BK<2,1> BK<2,2> SK<2,3> 

SK<2,0> 

SK<1,0> SK<1,1> 

SK<0,0> 

<l,v> 

<l+1,2v> 

 

<l+1,2v+1> 

BK<l+1, 2V> 

BK<l+1, 2V+1> 

Session Key (node<l,v>)=gK<l+1, 2v>K<l+1, 2v+1> mod p 
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2.4. Shortcomings of TGDH 

In spite of the computational advantages of the TGDH protocol, two shortcomings exist.  One 

shortcoming is that TGDH does not generate GKs based on the relative performance of group 

members’ systems.  Restated, the TGDH protocol assumes that all members have equal 

computing power.  In actuality, heterogeneity exists in distributed computing environments in 

that some group members have high-computing-power systems while other group members 

have lower-computing-power systems.  Because secure group communication will not be able 

to start until every member has a GK, the assumption of equal computing power means that the 

overall performance of the GK-generation process is limited by the lowest-performance group 

member. 

A second shortcoming is that TGDH uses a tree structure for GK generation.  For maximum 

performance, a tree must be well-balanced.  Because group members leave the GK generation 

tree randomly, such trees are either unbalanced and fail to achieve maximum performance or 

must be continually re-balanced in a process that generates computational overhead and slows 

GK generation [12].  

To resolve the first shortcoming for TGDH, the Enhanced TGDH (ETGDH) [8] was 

proposed. We now turn to a discussion of the ETGDH. 

2.5. ETGDH (Enhanced Tree-Based Group Diffie-Hellman) 

The ETGDH protocol addresses the fact that group members often have computer systems 

with differing levels of system performance.  Performance is measured in terms of the time it 

takes a member’s system to respond to the request for a secret key. Because system 

performance often differs, there are different roles that should be allocated to certain members 

in the group. Because the higher levels of the GK generation tree take more computing time 

than the lower levels of the GK generation tree do, members should be sorted so that the 

highest-performance member’s system begins the GK-generation process.   

Leaf-level computation is the first step in the process of generating the GK – and in the process 

of determining the relative performance of group members’ systems.  Leaf-level computation 

is depicted in Fig. 3. Leaf nodes represent members (M1, M2, M3, M4, M5, M6, M7, and M8). The 

sibling nodes in the tree are <M1, M2>, <M3, M4>, <M5, M6>, and <M7, M8>. Each member Mi 

generates a secret key K<l, v> and generates a blinded key BK<l, v>= g
K<l, v> 

mod p. The response 

time for generating the keys is measured, and then each member starts using the 

Diffie-Hellman key exchange. For example, M1 and M2 exchange the values M1 (g
K<3,0>

 mod p) 

and M2 (g
K<3,1> 

mod p) to generate sub-group key g
K<3,0>K<3,1>

 mod p. 

 
 

 

 

 

 

 

 

Fig. 3. Key Generation Tree 

<0,0> 

<1,0> <1,1> 

<2,0> <2,1> <2,2> <2,3> 

M1 

<3,0> <3,1> <3,2> <3,3> <3,4> <3,5> <3,6> <3,7> 

M2 M3 M4 M5 M7 M6 M8 
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After completing the leaf level computation, a session key in the next level is ready to be 

generated. The group controller (the last member to join) determines which member goes to 

the next level.  This determination is made by comparing each member’s response times, 

Tc(Mi). Assuming that the members who use higher-performance systems are M2, M4, M6, and 

M8, then each of these members will advance to the next level of the key generation process. 

The rest of the members will wait until the processes have been completed. The pairs at the 

next level will be < M2, M4> and <M6, M8>. The highest-performance members, <M4, M8>, 

generate the upper level session key. Finally, the highest performance member, M8, generates 

a final GK and distributes it to the rest of the members. Lower-performance group members do 

not participate in the generation of the GK.  Each of the steps in the key generation process that 

is depicted in Fig. 3 are explicitly listed in Table 2. 

Table 2. Key Generation Processes 

Key node Member Key Computation Process 

<3,0> M1 gK<3,0> mod p 

<3,1> M2 g K<3,1> mod p 
<3,2> M3 g K<3,2> mod p 

<3,3> M4 g K<3,3> mod p 

<3,4> M5 g K<3,4> mod p 
<3,5> M6 g K<3,5> mod p 

<3,6> M7 g K<3,6> mod p 

<3,7> M8 g K<3,7> mod p 

<2,0> M2 g<3,0><3,1> = 
3,0 3,1

mod
K K

g p
   

 

<2,1> M4 g<3,2><3,3> = 3,2 3,3
mod

K K
g p

     

<2,2> M6 g<3,4><3,5> = 
3,4 3,5

mod
K K

g p
   

 

<2,3> M8 g<3,6><3,7> = 
3,6 3,7

mod
K K

g p
   

 

<1,0> M4 g<2,0><2,1> = 
3,0 3,1 3,2 3,3

mod
K K K K

g g
g p

       

 

<1,1> M8 g<2,2><2,3> = 
3,4 3,5 3,6 3,7

mod
K K K K

g g
g p

       

 

<0,0> M8 g<1,0><1,1> = 

3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7

mod
K K K K K K K K

g g g gg g
g p

               

 

 

Efficiency gains in GK generation over TGDH can be realized if GKs are generated by a 

protocol that:  (1) determines which members are high-performance and which are 

low-performance, (2) prioritizes the generation of GKs for high-performance users, and (3) 

generates those GKs in descending order from the highest-performance member to the lowest.  

ETGDH is able to realize these efficiency gains, but it cannot resolve the second shortcoming 

of TGDH that we noted earlier, the tree maintenance problem. To reiterate, the key tree must 

be rebalanced every time a GK is generated after group membership changes.  This 

rebalancing is vital to achieve maximum performance. Because ETGDH leaves the 

shortcoming of tree maintenance unaddressed, we also note that efficiency gains in GK 

generation can be realized when a protocol (4) uses a structure that is more efficient than the 

tree-based structure.  Our proposed QGDH protocol does just this, providing secure 

communication more efficiently than any other conventional efficient GK generation protocol. 

3. Queue-Based Group Diffie-Hellman 

The QGDH protocol that we propose duplicates the efficiency gains of ETGDH by (1) 

determining which members are high-performance and which are low-performance, (2) 
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prioritizing the generation of GKs for high-performance members, and (3) generating those 

GKs in descending order from the highest-performance member to the lowest.  In addition, a 

queue structure is used to determine high- and low-performance members, yielding efficiency 

gains over tree-based protocols in the generation of GKs. 

QGDH, as its name indicates, uses a queue structure rather than a tree structure.  When 

group membership changes and a new GK is required, blinded keys are computed and stored 

in a blinded key queue (BKQ) on the group controller’s system. The highest-performance 

member’s key is stored at the front of the queue and the lowest-performing member’s key is 

stored at the back of the queue (with the remaining members’ keys stored somewhere in 

between, depending on the performance of the member’s system and thus, on the time of the 

key’s arrival in the BKQ). This arrangement is advantageous because the first element in the 

queue (which has been received from the highest-performance member) will be the first one 

processed.  This process avoids delays in generating a GK.  

An additional benefit of the queue structure can be seen when comparing it to a tree 

structure.  Queues have a simple linear data structure and can be changed when group 

members join or leave with minimal computational overheard.  In contrast, trees must 

maintain a balanced structure to achieve and maintain maximum performance.  Thus, an 

advantage of a queue structure over a tree structure is that a queue structure provides a useful 

way to determine high-performance members, one that avoids the additional computational 

overhead needed to maintain balance in a key tree.   

3.1. Reducing Overhead Costs in GK Management 

There are two overhead costs in a GK management protocol:  the first is computation cost, and 

the second is communication cost.  Computation and communication costs are important 

because they impact the scalability of GK management [10]. Communication cost is relatively 

small and constant (often using a 3-round protocol [9]).  Computation costs, in contrast, 

dominate the performance of GK management [10] because those costs depend directly on 

group size and because GK generation requires logarithmically-many exponentiations.  All 

members’ keys must have a contribution to calculate a GK that ensures GK secrecy [4].  

Therefore, QGDH focuses on reducing computation costs by assessing the computing power 

of group members’ systems. 

In general, the computing power of a member’s system depends on CPU capacity, main 

memory size, and the type of operating system. It is, however, impossible to retrieve another 

machine’s system information and evaluate all of its individual factors by normal network 

operations due to security reasons. The only way to evaluate each machine’s performance is to 

measure the total response time.  

To determine high performance members efficiently, a group controller is introduced in 

QGDH. The group controller is the last member to join the group. The group controller also is 

responsible for controlling the overall group key generation process by assigning members to 

the proper positions in the key generation whenever changes occur in the group membership. 

The role of the group controller in a dynamic peer group communication can potentially 

improve the group key generation process. He does not have any privilege. The group 

controller requires all members to compute their public keys and store them into a queue 

structure on the group controller in the order of arrival. The queue is a First-In-First-Out 

(FIFO) queue where the high performance members’ keys are always stored into the front 

positions in the queue. The benefit of using a FIFO queue is that QGDH provides an efficient 

way to determine high performance members’ machines without the additional overhead of 

actively comparing each member’s response time [8]. 
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3.2. How QGDH Works 

The QGDH protocol works in the following way.  The group controller broadcasts a request to 

all members to generate a blinded key.  The group controller receives all blinded keys and 

stores them into its’ BKQ in the order of their arrival, with the higher-performance members’ 

blinded keys stored in the front of the BKQ and the lower-performance members’ blinded keys 

stored in the rear of the BKQ.   

 

 

Fig. 4. Blind Key Queue Structure 

The group controller then requests members who are in the front half of the BKQ (the 

higher-performance members) to compute their Diffie-Hellman key exchange with those 

blinded keys and store them in the next level of the BKQ in order of arrival.  Following the 

determination of each level, the group controller collects and stores all computed session keys 

in the BKQ in Fig. 4. The highest-performance member’s key is always stored into the first 

spot in each level, the second highest performance member’s key is stored into the second spot, 

and so on. The keys in darker areas in Fig. 4 are determined as faster member’s keys. The 

BKQ automatically assigns each pair of keys.  For example, the first spot’s blinded key will be 

computed with the last spot’s blinded key (g
n4n1

); the second spot’s blinded key will be 

computed with the second-to-last spot’s blinded key (g
n3n2

).  

If group size is odd, then one of the member’s keys will not be able to calculate with other 

keys.  In such a situation, the orphan key will be shifted to the front areas in the next level of 

the BKQ and will wait until the other session keys are completed and stored in the BKQ.  After 

all session keys are stored in the BKQ, the group controller will assign new session key pairs 

based on their locations in the current BKQ.  The key in the front of the BKQ is computed with 

the key in the rear of the BKQ, and the orphan key will be assigned with the key that is located 

at the rear of the BKQ at this time.  Whenever an orphan key is present, it will be shifted to the 

front area of the next level of the BKQ and wait until a corresponding key is stored in the rear 

of the BKQ.  After continuing this process, only two session keys will remain and the final GK 

will be computed. 

The blinded keys in the rear half of the BKQ are regarded as the low-performance members’ 

keys and these are not used to compute intermediate keys.  After the low-performance 

members have provided their blinded keys to the high-performance members, the group 
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controller only allows the high-performance members who have blinded keys to continue to 

participate in the computation of the GK.  Thus, only high-performance members are selected 

to participate in the GK generation process and the QGDH protocol avoids the unnecessary 

delays involved in waiting for the completion of other members’ GKs.  Furthermore, QGDH 

does not require the maintenance of a balanced key tree (as in TGDH).  

There are two additional benefits of QGDH.  First, since all members participate in 

generating a GK, that GK will be cryptographically stronger and more reliable than one 

generated in a protocol that uses only a single member’s key. Second, all messages in our 

protocol are digitally signed by the sender’s private key using Public Key Infrastructure (PKI).  

Certificates include the version, serial number, the algorithm ID, the name of the issuer, the 

name of the sender, (or, equivalently, the signer), the certificate signature algorithm (RSA), 

and a time stamp.  Thus, a more trusted certificate and a more secure GK are additional 

advantages the QGDH protocol. 

3.3. Membership Operations QGDH Supports 

QGDH supports the following four operations: join, leave, partition, and merge.  

Join Operation - Whenever a new member joins a group communication, the group controller 

broadcasts a control message to other members to generate a new blinded key and then store 

all the blinded keys from members in the BKQ in the order of arrival. The group controller 

determines high-performance members who will generate a session key in the next level of the 

GK generation process by checking the location of a blinded key in the BKQ. The 

high-performance members’ blinded keys are always automatically stored in the front of the 

BKQ.  The major steps in the join operation are shown in Table 3. 

Table 3. Join Operation 

Step Description 

Step 1:   When a new member joins, the group controller broadcasts a 

control message to all members.  

Step 2:   Every member generates a blinded key and sends it back to 

the group controller.  

Step 3:   The group controller 

 receives all blinded keys and stores them into the 

BKQ in the order of arrival 

 selects a next-level key pair for GK generation by 

matching high-performance members’ and 

low-performance members’ blinded keys 

 broadcasts to only members who are located at the 

front of the BKQ 

Step 4:   Approved members compute a key pair and send it back to 

the group controller 

Step 5:   The group controller  

 repeats Step 3 until the final GK has been generated 

 sends the final GK to all members when it has been 

generated 
 

 

Leave Operation - As a member leaves the group, the GK must be recomputed. When an old 

member leaves, the group controller broadcasts a message to other members to generate a 
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blinded key and then receives all blinded keys into the BKQ. Major steps are shown in Table 

4. 

Table 4. Leave Operation 

Step Description 

Step 1:   When an old member leaves, the group controller broadcasts a control 

message to other members to generate a blinded key for group key secrecy.  

Step 2:   Every member generates a blinded key and sends it back to the group 
controller  

Step 3:   The group controller 

 receives all blinded keys and stores them into the BKQ in order of 
arrival 

 selects a next-level key pair for GK generation by matching 

high-performance members’ and low-performance members’ blinded 
keys 

 broadcasts only to members who are located at the front of the BKQ 

Step 4:   Approved members compute a key pair and send it back to the group 
controller 

Step 5:   The group controller  

 repeats Step 3 until the final GK has been generated 

 sends the final GK to all members when it has been generated 

 

Partition Operation - In contrast to the ETGDH, there is no subgroup controller in QGDH. A 

partitioned group is defined in QGDH as members that are disconnected from the group 

controller. The partitioned group will not be able to communicate with other partitioned group 

members because it does not have any subgroup controllers to reconnect them. The group 

controller uses polling to check members’ networking status. If the group controller detects a 

member who is unreachable, the partition operation will be implemented until the 

disconnected member’s status is resolved. In such a case, a GK must be regenerated, and the 

rest of the procedures are the same as join and leave operations. The major steps are shown in 

Table 5. 

Table 5. Partition Operation 

Step Description 

Step 1:   When a group controller detects unreachable members by using polling, the 

group controller broadcasts a control message to other members to generate 

a blinded key for group key secrecy. 

Step 2:   Every member generates a blinded key and sends it back to the group 
controller  

Step 3:   The group controller 

 receives all blinded keys and stores them into the BKQ in order of 
arrival 

 selects a key pair at the next level for GK generation by matching 
high-performance members’ and low-performance members’ blinded 

keys 

 broadcasts only to members who are located at the front of the BKQ 

Step 4:   Approved members compute a key pair and send it back to the group 

controller 

Step 5:   The group controller  

 repeats Step 3 until the final GK has been generated 

 sends the final GK to all members when it has been generated 

 

Merge Operation - In QGDH neither a subgroup controller nor a partitioned group exists. 

Only unreachable members exist. Therefore, the merge operation is not necessary in QGDH. 

The merge operation is the same as the join operation, and the unreachable members must 
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rejoin the group to communicate with other members. The major steps are shown in Table 6 

(identical to Table 3 which shows the Join Operation). 

Table 6. Merge Operation 

Step Description 

Step 1:   When a new member joins, the group controller broadcasts a control 
message to all members.  

Step 2:   Every member generates a blinded key and sends it back to the group 

controller.  

Step 3:   The group controller 

 receives all blinded keys and stores them into the BKQ in the order of 
arrival 

 selects a next-level key pair for GK generation by matching 
high-performance members’ and low-performance members’ blinded 

keys 

 broadcasts to only members who are located at the front of the BKQ 

Step 4:   Approved members compute a key pair and send it back to the group 

controller 

Step 5:   The group controller  

 repeats Step 3 until the final GK has been generated 

 sends the final GK to all members when it has been generated 

 

Summary - the QGDH protocol provides an efficient method to determine high performance 

members.  It does so by storing the blinded keys’ in the BKQ in the order they are received.   

4. Experiments and Performance Comparisons 

This section demonstrates how low-performance group members negatively affect the overall 

performance of the GK generation process and how the QGDH protocol can address this 

problem.  We show first, that the performance of group members’ computer systems can affect 

the efficiency of GK generation.  Then, we show that QGDH is more efficient than alternate 

approaches, including TGDH and ETGDH. 

4.1. Comparing GK Protocols on Different Systems 

To investigate the performance of group members’ computer systems, four different machines 

with different operating systems (Windows XP, Linux, Unix, and Macintosh) were selected 

from a given network. The Windows XP machine is a Pentium 4 (2.8 GHz, 1 GB of RAM), the 

Linux (SuSE Linux 9.1) is a Pentium 4 (1.3 GHz, 480 MB of RAM), the Unix (Sun Solaris 9) 

is a SUN UltraSPARC (650 MHz, 2 GB RAM), and the Macintosh is a PowerPC G5 (Dual 2.7 

GHz, 4 GB RAM).  Recall that is not necessary for the group controller to actually detect the 

system resources in terms of processing power and RAM.  Performance is measured solely in 

terms of the time it takes the system to respond to the group controller with the BK.  The 

experimental results clearly show that the low-performance members’ systems are slower at 

generating GKs than are the high-performance members’ systems (see Fig. 5 and Table 7).  

This indicates that GK generation processes can be improved by taking into account the 

performance of group members’ computer systems. 
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                     Group Key Generation Level 

Fig. 5. Performance Analysis for Group Key Generation Process 

Table 7. Average response times in each group key generation level (msec) 

Operating 

Systems 
Unix Linux 

Windows 

XP 
Mac OS 

CPU Clock 

Pulse 

650 M 

Hz 

1.3 G 

Hz 

2.8 G Hz Dual 2.7 

GHz* 

Level 1 375.3  83.4 39.1 21.4 

Level 2 710.5 148.1 73.4 37.9 

Level 3 1,074.2 215.7 117.1 57.4 

Level 4 1,441.9 284.0 145.3 74.3 

Level 5 1,797.7 349.9 181.2 93.3 

Level 6 2,166.8 418.1 220.3 134.4 

Level 7 2,527.5 487.0 262.5 163.7 

Average 1,442.0 283.7 148.4 83.2 
* According to SPEC CPU 2000, the performance of the dual 2.7 GHz CPU is 1.9 times faster than a single 3.0 GHz CPU. Thus, the 

computing power of the dual 2.7 GHz CPU is theoretically equal to the computing power of a single 5.2G Hz CPU. 

 

To contrast QGDH with TGDH, ETGDH, and BD, we compare and plot the overall 

performance of the four protocols. Test results show to the average response times of 

generating the GK when a new member joins a group (including computation and 

communication overhead). The experiment consisted of the same four machines mentioned in 

the previous paragraph. At each level of GK generation (shown in Table 7), the QGDH 

protocol generates GKs in a shorter amount of time than either TGDH, ETGDH or BD (see 

Fig. 6).  Recall that QGDH determines high-performance members at each level to optimize 

GK generation (and guard against delays caused by network faults, system failures, or other 

problems during the GK generation process).  Thus, these results indicate that QGDH presents 

a way to generate GKs more efficiently than a process that does not account for the 

performance of group members’ systems (TGDH).  These results also indicate that QGDH 
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presents a way to generate GKs more efficiently than tree-based protocols such as ETGDH. 

Due to a high latency on generating BD’s key as O(n
2
) [12], BD records the wrost performance 

among other protocols, and the difference between QGDH and ETGDH is not generated. 
 

 

 
Fig. 6. Total Response Times for Generating a Group Key 

4.2. Evaluating Membership Operations of Different GK Protocols 

To verify that the proposed protocols are efficient, measurements of the time to 

complete the GK generation process were taken. The response times are measured by 

the times elapsed between invocation and completion. The overall performance of 

each machine is determined by the total response time (TR) in terms of computing 

power and load (TC), tree maintenance or queuing time (Tm), and network latency (TN). 

TC refers to the computing power which is a constant factor in terms of the capacity of 

the CPU, clock, main memory size, hard disk size, etc. Tm is the overhead involved in 

maintaining the key tree or the queuing structure. TN is the time spent exchanging 

messages.  

TR = TC + Tm + TN                                                                              (4) 

Communication and computation costs for each membership operation (join, leave, 

merge, and partition) are analyzed in terms of TR. Other variables to be considered 

include the number of rounds and the communication costs. QGDH was compared to 

TGDH and ETGDH. The number of current groups, merging groups, leaving members, 

and partitions are denoted by n, m, k (m ≥ k ) and p, respectively. The height of the key 

tree constructed by the TGDH protocol is h. Table 8 shows the communication and 

computation costs of these four operations [1].   
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TABLE 8. Communication and computation costs summary 

Protocol 
Communication Computation Properties 

Rounds Messages Exponentiations 

QGDH 

Join 2 2n - 2 3(log2n) / 2 QGDH has developed the disadvantage of 

ETGDH by using queue structure, which the 

key tree must be balanced. Otherwise, the 
overall performance wouldn’t be O(log n) 

Leave 1 2n - 2 3(log2n) / 2 

Partition 1 2n - 2 3(log2n) 

Merge 2 2n - 2 3(log2n) / 2 

ETGD
H 

Join 2 2n - 2 3h / 2 ETGDH has been developed to overcome the 

TGDH’s disadvantage which the overall 
performance depends on the slowest 

member’s performance. ETGDH allows 

higher performance members who will be 
able to join in key generating process, so it 

can avoid unnecessary delay.  

Leave 1 2n - 2 3h / 2 

Partition 1 2n - 2 3h 

Merge 2 2n - 2 3h / 2 

BD 

Join 2 2n + 2 
3 The main idea in BD is to distribute the 

computation among members, such that each 

member performs only three exponentiations. 

This is achieved by using two communication 
rounds, each of them consisting of n 

broadcasts. BD requires O(n2) modular 

multiplications, and BD’s group key is 
K=gx1x2+x2x3+…xn-1xnmod p (p is a exponential 

base) 

Leave 
2 2n - 2 3 

Partition 
2 2n + 2m 3 

Merge 
2 2n – 2p 3 

TGDH 

Join 2 3 3h / 2 TGDH used a tree structure to reduce 
complexity of group key. However, every 

member needs to join in key generating 

process, so the overall performance depends 
on the slowest member’s performance. 

Leave 1 1 3h / 2 

Partition min(log2 p, h) 2h 3h 

Merge log2k + 1 2k 3h / 2 

  

BD [16] has n - 1 modular exponentiations with a small exponent. Unfortunately, n - 1 such 

exponentiations can be expensive when n is large. For example, BD requires O(n2) 1024-bit 

modular multiplications, if modular exponentiation is implemented with the 

square-and-multiply algorithm. BD is the most expensive protocol in terms of communication 

in leave. The cost order among others is determined strictly by the computation cost, since 

they all have the same communication cost (one round consisting of one message). 

The rounds in Table 8 correspond to how many broadcasts are used to send and receive 

blinded keys among each member. In ETGDH and QGDH as a new member joins, this new 

member must send his or her blinded key to all members (round 1).  After sending this key, the 

new member needs to obtain all other members’ blinded keys. Thus, all current members send 

their blinded keys back to the new member in parallel (round 2). Therefore, two rounds are 

required in the join and merge events. There is only one round in the leave event because a 

leaving member simply reports his or her leaving to all other members by using one broadcast. 

5. Conclusion 

The QGDH protocol, a GK generation protocol that uses a queue structure to determine 

high-performance group members and prioritize the generation of their GKs, offers a way to 

overcome the limitations of the TGDH protocol, a protocol that assumes that all members have 

equal computing power.  In the QGDH model, the problem of a low-performance member 

possibly slowing down the GK generation process is mitigated.  The QGDH protocol is more 

efficient than both the TGDH and ETGDH protocols across a number of computer systems 

and for groups of various sizes.  Therefore, the QGDH protocol represents an improvement in 
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efficiency over existing approaches to secret key cryptography. This and other advances have 

the potential to reduce computational overhead and address the challenge of maximizing 

efficiency in secure group communication. 
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