• Title/Summary/Keyword: Key Parameters

Search Result 2,278, Processing Time 0.027 seconds

A SENSITIVITY ANALYSIS OF THE KEY PARAMETERS FOR THE PREDICTION OF THE PRESTRESS FORCE ON BONDED TENDONS

  • Jang, Jung-Bum;Lee, Hong-Pyo;Hwang, Kyeong-Min;Song, Young-Chul
    • Nuclear Engineering and Technology
    • /
    • v.42 no.3
    • /
    • pp.319-328
    • /
    • 2010
  • Bonded tendons have been used in reactor buildings at some operating nuclear power plants in Korea. Assessing prestress force on these bonded tendons has become an important pending problem in efforts to assure continued operation beyond their design life. The System Identification (SI) technique was thus developed to improve upon the existing indirect assessment technique for bonded tendons. As a first step, this study analyzed the sensitivity of the key parameters to prestress force, and then determined the optimal parameters for the SI technique. A total of six scaled post-tensioned concrete beams with bonded tendons were manufactured. In order to investigate the correlation of the natural frequency and the displacement to prestress force, an impact test, a Single Input Multiple Output (SIMO) sine sweep test, and a bending test using an optical fiber sensor and compact displacement transducer were carried out. These tests found that both the natural frequency and the displacement show a good correlation with prestress force and that both parameters are available for the SI technique to predict prestress force. However, displacements by the optical fiber sensor and compact displacement transducer were shown to be more sensitive than the natural frequency to prestress force. Such displacements are more useful than the natural frequency as an input parameter for the SI technique.

Field monitoring of the train-induced hanger vibration in a high-speed railway steel arch bridge

  • Ding, Youliang;An, Yonghui;Wang, Chao
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.1107-1127
    • /
    • 2016
  • Studies on dynamic characteristics of the hanger vibration using field monitoring data are important for the design and evaluation of high-speed railway truss arch bridges. This paper presents an analysis of the hanger's dynamic displacement responses based on field monitoring of Dashengguan Yangtze River Bridge, which is a high-speed railway truss arch bridge with the longest span throughout the world. The three vibration parameters, i.e., dynamic displacement amplitude, dynamic load factor and vibration amplitude, are selected to investigate the hanger's vibration characteristics in each railway load case including the probability statistical characteristics and coupled vibration characteristics. The influences of carriageway and carriage number on the hanger's vibration characteristics are further investigated. The results indicate that: (1) All the eight railway load cases can be successfully identified according to the relationship of responses from strain sensors and accelerometers in the structural health monitoring system. (2) The hanger's three vibration parameters in each load case in the longitudinal and transverse directions have obvious probabilistic characteristics. However, they fall into different distribution functions. (3) There is good correlation between the hanger's longitudinal/transverse dynamic displacement and the main girder's transverse dynamic displacement in each load case, and their relationships are shown in the hysteresis curves. (4) Influences of the carriageway and carriage number on the hanger's three parameters are different in both longitudinal and transverse directions; while the influence on any of the three parameters presents an obvious statistical trend. The present paper lays a good foundation for the further analysis of train-induced hanger vibration and control.

An Experimental Study on the Joints in Ultra High Performance Precast Concrete Segmental Bridges (초고성능 프리캐스트 콘크리트 세그멘탈 교량 접합부에 대한 실험 연구)

  • Lee, Chang-Hong;Chin, Won-Jong;Choi, Eun-Suk;Kim, Young-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.235-244
    • /
    • 2011
  • Failures of segmental bridges have been attributed to the inadequate joint connection techniques, which led to corrosion of the post-tensioned tendons connecting the segmental joints. The principal objective of this study is to evaluate the performances of the in-situ cast joint and epoxy applied shear key joints as a function of shear and ultimate strengths. Furthermore, shear behavior and strength of shear key joints in ultra high performance precasted concrete segmental bridges are experimentally evaluated to understand its shear failure behavior. The test parameters of shear key shape and type, load-displacement relations, cracking behavior, concrete strength, and fracture modes are considered in the study. Also, several parameters which influence the mechanical behavior of the shear key joint are analyzed. Based on the study results, the optimal shear key shape and joint type are proposed for the joint design and analysis guidelines.

Experimental study on the mechanical property of coal and its application

  • Jiang, Ting T.;Zhang, Jian H.;Huang, Gang;Song, Shao X.;Wu, Hao
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.9-17
    • /
    • 2018
  • Brazilian splitting tests, uniaxial compression tests and triaxial compression tests are carried out on the coal samples cored from Shanxi group $II_1$ coal seam of Jiaozuo coal mine, Henan province, China, to obtain their property parameters. Considering the bedding has notable effect on the property parameter of coal, the samples with different bedding angles are prepared. The effects of bedding on the anisotropic characteristics of the coal seam are investigated. A geological geomechanical model is built based on the geology characteristics of the Jiaozuo coal mine target reservoir to study the effects of bedding on the fracture propagations during hydraulic fracturing. The effects of injection pressure, well completion method, in-situ stress difference coefficient, and fracturing fluid displacement on the fracture propagations are investigated. Results show bedding has notable effects on the property parameters of coal, which is the key factor affecting the anisotropy of coal. The hydraulic cracks trends to bifurcate and swerve at the bedding due to its low strength. Induced fractures are produced easily at the locations around the bedding. The bedding is beneficial to form a complicated fracture network. Experimental and numerical simulations can help to understand the effects of bedding on hydraulic fracturing in coalbed methane reservoirs.

Adsorption of methyl orange from aqueous solution on anion exchange membranes: Adsorption kinetics and equilibrium

  • Khan, Muhammad Imran;Wu, Liang;Mondal, Abhishek N.;Yao, Zilu;Ge, Liang;Xu, Tongwen
    • Membrane and Water Treatment
    • /
    • v.7 no.1
    • /
    • pp.23-38
    • /
    • 2016
  • Batch adsorption of methyl orange (MO) from aqueous solution using three kinds of anion exchange membranes BI, BIII and DF-120B having different ion exchange capacities (IECs) and water uptakes ($W_R$) was investigated at room temperature. The FTIR spectra of anion exchange membranes was analysed before and after the adsorption of MO dye to investigate the intractions between dye molecules and anion exchange membranes. The effect of various parameters such as contact time, initial dye concentration and molarity of NaCl on the adsorption capacity was studied. The adsorption capacity found to be increased with contact time and initial dye concentration but decreased with ionic strength. The adsorption of MO on BI, BIII and DF-120B followed pseudo-first-order kinetics and the nonlinear forms of Freundlich and Langmuir were used to predict the isotherm parameters. This study demonstrates that anion exchange membranes could be used as useful adsorbents for removal of MO dye from wastewater.

A Study on the Repair Work for Spindle Key with Damaged Part in Planner Miller by Directed Energy Deposition (DED 방식을 적용한 플래너 밀러의 손상된 스핀들 키 보수 작업에 관한 연구)

  • Lee, Jae-Ho;Song, Jin-Young;Jin, Chul-Kyu;Kim, Chai-Hwan
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.699-706
    • /
    • 2022
  • In this study, Directed energy deposition (DED) among additive manufacturing is applied to repair damaged spindle key parts of planner miller. The material of the spindle key is SCM415, and the P21 Powder is used. In order to find the optimal deposition conditions for DED equipment, a single-line deposition experiment is conducted to analysis five parameters. The laser power affects the width, and the height is a parameter affected by coaxial gas and powder gas. In addition, laser power, powder feed rate, coaxial gas, and powder gas are parameters that affect dilution. Otimal deposition is that 400 W of laser power, 4.0 g/min of powder feed rate, 6.5 L/min of coaxial gas, 3.0 L/min of powder gas and 4.5 L/min of shield gas. By setting the optimum conditions, a uniform deposition cross section in the form of an ellipse can be obtained. Damage recovery process of spindle key consists of 3D shape design of the base and deposition parts, deposition path creation and deposition process, and post-processing. The hardness of deposited area with P21 powder on the SCM415 spindle key is 336 HV for the surface of the deposition, 260 HV for the boundary area, and 165 HV for the base material.

Effect of spatial variability of concrete materials on the uncertain thermodynamic properties of shaft lining structure

  • Wang, Tao;Li, Shuai;Pei, Xiangjun;Yang, Yafan;Zhu, Bin;Zhou, Guoqing
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.205-217
    • /
    • 2022
  • The thermodynamic properties of shaft lining concrete (SLC) are important evidence for the design and construction, and the spatial variability of concrete materials can directly affect the stochastic thermal analysis of the concrete structures. In this work, an array of field experiments of the concrete materials are carried out, and the statistical characteristics of thermophysical parameters of SLC are obtained. The coefficient of variation (COV) and scale of fluctuation (SOF) of uncertain thermophysical parameters are estimated. A three-dimensional (3-D) stochastic thermal model of concrete materials with heat conduction and hydration heat is proposed, and the uncertain thermodynamic properties of SLC are computed by the self-compiled program. Model validation with the experimental and numerical temperatures is also presented. According to the relationship between autocorrelation functions distance (ACD) and SOF for the five theoretical autocorrelation functions (ACFs), the effects of the ACF, COV and ACD of concrete materials on the uncertain thermodynamic properties of SLC are analyzed. The results show that the spatial variability of concrete materials is subsistent. The average temperatures and standard deviation (SD) of inner SLC are the lowest while the outer SLC is the highest. The effects of five 3-D ACFs of concrete materials on uncertain thermodynamic properties of SLC are insignificant. The larger the COV of concrete materials is, the larger the SD of SLC will be. On the contrary, the longer the ACD of concrete materials is, the smaller the SD of SLC will be. The SD of temperature of SLC increases first and then decreases. This study can provide a reliable reference for the thermodynamic properties of SLC considering spatial variability of concrete materials.

A novel adaptive unscented Kalman Filter with forgetting factor for the identification of the time-variant structural parameters

  • Yanzhe Zhang ;Yong Ding ;Jianqing Bu;Lina Guo
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.9-21
    • /
    • 2023
  • The parameters of civil engineering structures have time-variant characteristics during their service. When extremely large external excitations, such as earthquake excitation to buildings or overweight vehicles to bridges, apply to structures, sudden or gradual damage may be caused. It is crucially necessary to detect the occurrence time and severity of the damage. The unscented Kalman filter (UKF), as one efficient estimator, is usually used to conduct the recursive identification of parameters. However, the conventional UKF algorithm has a weak tracking ability for time-variant structural parameters. To improve the identification ability of time-variant parameters, an adaptive UKF with forgetting factor (AUKF-FF) algorithm, in which the state covariance, innovation covariance and cross covariance are updated simultaneously with the help of the forgetting factor, is proposed. To verify the effectiveness of the method, this paper conducted two case studies as follows: the identification of time-variant parameters of a simply supported bridge when the vehicle passing, and the model updating of a six-story concrete frame structure with field test during the Yangbi earthquake excitation in Yunnan Province, China. The comparison results of the numerical studies show that the proposed method is superior to the conventional UKF algorithm for the time-variant parameter identification in convergence speed, accuracy and adaptability to the sampling frequency. The field test studies demonstrate that the proposed method can provide suggestions for solving practical problems.

Methodology of Mapping Quantitative Trait Loci for Binary Traits in a Half-sib Design Using Maximum Likelihood

  • Yin, Zongjun;Zhang, Qin;Zhang, Jigang;Ding, Xiangdong;Wang, Chunkao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1669-1674
    • /
    • 2005
  • Maximum likelihood methodology was applied to analyze the efficiency and statistical power of interval mapping by using a threshold model. The factors that affect QTL detection efficiency (e.g. QTL effect, heritability and incidence of categories) were simulated in our study. Daughter design with multiple families was applied, and the size of segregating population is 500. The results showed that the threshold model has a great advantage in parameters estimation and power of QTL mapping, and has nice efficiency and accuracy for discrete traits. In addition, the accuracy and power of QTL mapping depended on the effect of putative quantitative trait loci, the value of heritability and incidence directly. With the increase of QTL effect, heritability and incidence of categories, the accuracy and power of QTL mapping improved correspondingly.

Effect of Dietary Phytase Transgenic Corn on Physiological Characteristics and the Fate of Recombinant Plant DNA in Laying Hens

  • Gao, Chunqi;Ma, Qiugang;Zhao, Lihong;Zhang, Jianyun;Ji, Cheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.1
    • /
    • pp.77-82
    • /
    • 2014
  • The study aimed to evaluate the potential effects of feeding with phytase transgenic corn (PTC) on organ weight, serum biochemical parameters and nutrient digestibility, and to determine the fate of the transgenic DNA in laying hens. A total of 144 50-week-old laying hens were grouped randomly into 2 treatments, with 8 replicates per treatment and 9 hens per replicate. Each treatment group of hens was fed with diets containing 62.4% non-transgenic conventional corn (CC) or PTC for 16 weeks. The phytase activity for CC was 37 FTU/kg of DM, whereas the phytase activity for PTC was 8,980 FTU/kg of DM. We observed that feeding PTC to laying hens had no adverse effect on organ weight or serum biochemical parameters (p>0.05). A fragment of a poultry-specific ovalbumin gene (ov) was amplified from all tissues of hens showing that the DNA preparations were amenable to PCR amplification. Neither the corn-specific invertase gene (ivr) nor the transgenic phyA2 gene was detected in the breast muscle, leg muscle, ovary, oviduct and eggs. The digestibility data revealed no significant differences between the hens that received the CC- and PTC-based diets in the digestibility of DM, energy, nitrogen and calcium (p>0.05). Phosphorus digestibility of hens fed the PTC-based diet was greater than that of hens fed the CC-based diet (58.03% vs 47.42%, p<0.01). Based on these results, it was concluded that the PTC had no deleterious effects on the organ weight or serum biochemical parameters of the laying hens. No recombinant phyA2 gene was detected in muscle tissues and reproductive organs of laying hens. The novel plant phytase was efficacious in improving the phosphorus digestibility of laying hens.