• Title/Summary/Keyword: Key Generation

Search Result 1,492, Processing Time 0.026 seconds

Topology Generation and Analysis of the No Dead Time AC/DC Converter

  • Zheng, Xinxin;Xiao, Lan;Tian, Yangtian
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.249-256
    • /
    • 2014
  • A novel topology generation method for the no dead-time three-phase AC/DC converter is proposed in this study. With this method, a series of no dead time topologies are generated and their operation principles are analyzed. The classic three-phase bridge AC/DC converter can realize a bidirectional operation. However, dead-time should be inserted in the driving signals to avoid the shoot-through problem, which would cause additional harmonics. Compared with the bridge topology, the proposed topologies lack the shoot-through problem. Thus, dead time can be avoided. All of the no dead time three-phase AC/DC converters can realize bidirectional operation. The operating principles of the converters are analyzed in detail, and the corresponding control strategies are discussed. Comparisons of waveform distortion and efficiency among the converters are provided. Finally, 9 KW DSP-based principle prototypes are established and tested. Simulation and experimental results verify the theoretical analysis.

Modeling and Analysis of Leakage Currents in PWM-VSI-Fed PMSM Drives for Air-Conditioners with High Accuracy and within a Wide Frequency Range

  • Sun, Kai;Lu, Yangjun;Xing, Yan;Huang, Lipei
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.970-981
    • /
    • 2016
  • Leakage currents occur in pulse-width-modulated voltage source inverter (PWM-VSI)-fed permanent magnet synchronous motor (PMSM) drives for air-conditioners, which seriously affect system safety and operation performance. High accuracy modeling and prediction of leakage currents are key issues for the design and implementation of air-conditioning products. In this study, the generation mechanism of leakage currents is discussed. A systematic modeling approach of leakage currents is proposed, including the modeling of leakage current sources and leakage current paths. By using the proposed approach, the complete model of leakage currents in PWM-VSI-fed PMSM drives for air-conditioners has been developed based on the extraction of all parameters. A comparison between the simulated leakage currents based on the developed model and measured leakage currents in the outdoor unit of an air-conditioning product is conducted. The comparison verifies the effectiveness of the proposed modeling approach, and the developed model exhibits high accuracy within a wide frequency range.

Genetic Symmetric Key Generation for IDEA

  • Malhotra, Nandini;Nagpal, Geeta
    • Journal of Information Processing Systems
    • /
    • v.11 no.2
    • /
    • pp.239-247
    • /
    • 2015
  • Cryptography aims at transmitting secure data over an unsecure network in coded version so that only the intended recipient can analyze it. Communication through messages, emails, or various other modes requires high security so as to maintain the confidentiality of the content. This paper deals with IDEA's shortcoming of generating weak keys. If these keys are used for encryption and decryption may result in the easy prediction of ciphertext corresponding to the plaintext. For applying genetic approach, which is well-known optimization technique, to the weak keys, we obtained a definite solution to convert the weaker keys to stronger ones. The chances of generating a weak key in IDEA are very rare, but if it is produced, it could lead to a huge risk of attacks being made on the key, as well as on the information. Hence, measures have been taken to safeguard the key and to ensure the privacy of information.

FI-Based Local Group Key Generation/Distribution for Mobile Multicast in a Hierarchical Mobile IPv6Network

  • Baek, Jin-Suk;Fisher, Paul S.;Kwak, Ming-Yung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.1
    • /
    • pp.5-21
    • /
    • 2008
  • In order to securely transmit multicast data packets in a mobile environment where frequent join/leave events are a characteristic of the environment, there is a need for a new secure and efficient group key management solution. We propose a secure group key generation/distribution solution providing scalability and reliability. Using this solution, when a mobile node, which is in a multicast session, enters a new domain, the agent of the domain joins the multicast session and coordinates its data packets with the mobile node. The agent encrypts and transmits subsequent data packets to the mobile node, using a local one-time pad key. This key is generated with FI sequences, enabling the mobile node to regenerate the same data packet, based on the information sent by the agent. Our performance analysis demonstrates that the proposed solution can significantly reduce the number of key generations and distributions, when it is applied to the hierarchical mobile IPv6 network.

An Efficient Group Key Management Scheme using Counting Bloom Filter in VANET (VANET에서 카운팅 블룸 필터를 사용한 효율적인 그룹 키 관리 기법)

  • Lee, SuYoun;Ahn, HyoBeom
    • Convergence Security Journal
    • /
    • v.13 no.4
    • /
    • pp.47-52
    • /
    • 2013
  • VANET(Vehicular Ad-hoc Network) is a kind of ad hoc networks which is consist of intelligence vehicular ad nodes, and has become a hot emerging research project in many fields. It provides traffic safety, cooperative driving and etc. but has also some security problems that can be occurred in general ad hoc networks. In VANET, it has been studies that group signature method for user privacy. However, among a group of group key generation phase and group key update phase, RSU(Road-Side Unit) and the computational overhead of the vehicle occur. In this paper, we propose an efficient group key management techniques with CBF(Counting Bloom Filter). Our group key management method is reduced to the computational overhead of RSU and vehicles at the group key generation and renewal stage. In addition, our method is a technique to update group key itself.

Randomized Block Size (RBS) Model for Secure Data Storage in Distributed Server

  • Sinha, Keshav;Paul, Partha;Amritanjali, Amritanjali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4508-4530
    • /
    • 2021
  • Today distributed data storage service are being widely used. However lack of proper means of security makes the user data vulnerable. In this work, we propose a Randomized Block Size (RBS) model for secure data storage in distributed environments. The model work with multifold block sizes encrypted with the Chinese Remainder Theorem-based RSA (C-RSA) technique for end-to-end security of multimedia data. The proposed RBS model has a key generation phase (KGP) for constructing asymmetric keys, and a rand generation phase (RGP) for applying optimal asymmetric encryption padding (OAEP) to the original message. The experimental results obtained with text and image files show that the post encryption file size is not much affected, and data is efficiently encrypted while storing at the distributed storage server (DSS). The parameters such as ciphertext size, encryption time, and throughput have been considered for performance evaluation, whereas statistical analysis like similarity measurement, correlation coefficient, histogram, and entropy analysis uses to check image pixels deviation. The number of pixels change rate (NPCR) and unified averaged changed intensity (UACI) were used to check the strength of the proposed encryption technique. The proposed model is robust with high resilience against eavesdropping, insider attack, and chosen-plaintext attack.

Hyperledger Fabric and Asymmetric Key Encryption for Health Information Management Server (하이퍼레저 패브릭과 비대칭키 암호화 기술을 결합한 건강정보 관리서버)

  • Han, Hyegyeong;Hwang, Heejoung
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.7
    • /
    • pp.922-931
    • /
    • 2022
  • Recently, the need for health information management platforms has been increasing for efficient medical and IT technology research. However, health information is requiring security management by law. When permissioned blockchain technology is used to manage health information, the integrity is provided because only the authenticated users participate in bock generation. However, if the blockchain server is attacked, it is difficult to provide security because user authentication, block generation, and block verification are all performed on the blockchain server. In this paper, therefore, we propose a Health Information Management Server, which uses a permissioned blockchain algorithm and asymmetric cryptography. Health information is managed as a blockchain transaction to maintain the integrity, and the actual data are encrypted with an asymmetric key. Since using a private key kept in the institute local environment, the data confidentiality is maintained, even if the server is attacked. 1,000 transactions were requested, as a result, it was found that the server's average response time was 6,140ms, and the average turnaround time of bock generation was 368ms, which were excellent compared to those of conventional technology. This paper is that a model was proposed to overcome the limitations of permissioned blockchains.

Implementation and characterization of flash-based hardware security primitives for cryptographic key generation

  • Mi-Kyung Oh;Sangjae Lee;Yousung Kang;Dooho Choi
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.346-357
    • /
    • 2023
  • Hardware security primitives, also known as physical unclonable functions (PUFs), perform innovative roles to extract the randomness unique to specific hardware. This paper proposes a novel hardware security primitive using a commercial off-the-shelf flash memory chip that is an intrinsic part of most commercial Internet of Things (IoT) devices. First, we define a hardware security source model to describe a hardware-based fixed random bit generator for use in security applications, such as cryptographic key generation. Then, we propose a hardware security primitive with flash memory by exploiting the variability of tunneling electrons in the floating gate. In accordance with the requirements for robustness against the environment, timing variations, and random errors, we developed an adaptive extraction algorithm for the flash PUF. Experimental results show that the proposed flash PUF successfully generates a fixed random response, where the uniqueness is 49.1%, steadiness is 3.8%, uniformity is 50.2%, and min-entropy per bit is 0.87. Thus, our approach can be applied to security applications with reliability and satisfy high-entropy requirements, such as cryptographic key generation for IoT devices.

Enhanced Message Authentication Encryption Scheme Based on Physical-Layer Key Generation in Resource-Limited Internet of Things

  • Zeng Xing;Bo Zhao;Bo Xu;Guangliang Ren;Zhiqiang Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.9
    • /
    • pp.2546-2563
    • /
    • 2024
  • The Internet of Things (IoT) is facing growing security challenges due to its vulnerability. It is imperative to address the security issues using lightweight and efficient encryption schemes in resource-limited IoT. In this paper, we propose an enhanced message authentication encryption (MAE) scheme based on physical-layer key generation (PKG), which uses the random nature of wireless channels to generate and negotiate keys, and simultaneously encrypts the messages and authenticates the source. The proposed enhanced MAE scheme can greatly improve the security performance via dynamic keyed primitives construction while consuming very few resources. The enhanced MAE scheme is an efficient and lightweight secure communication solution, which is very suitable for resource-limited IoT. Theoretical analysis and simulations are carried out to confirm the security of the enhanced MAE scheme and evaluate its performance. A one-bit flipping in the session key or plain texts will result in a 50%-bit change in the ciphertext or message authentication code. The numerical results demonstrate the good performance of the proposed scheme in terms of diffusion and confusion. With respect to the typical advanced encryption standard (AES)-based scheme, the performance of the proposed scheme improves by 80.5% in terms of algorithm execution efficiency.

Next Generation Sequencing (NGS), A Key Tool to open the Personalized Medicine Era

  • Kwon, Sun-Il
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.44 no.4
    • /
    • pp.167-177
    • /
    • 2012
  • Next-Generation Sequencing (NGS) is a term that means post-Sanger sequencing methods with high-throughput sequencing technologies. NGS parallelizes the sequencing process, producing thousands or millions of sequences at once. The latest NGS technologies use even single DNA molecule as a template and measures the DNA sequence directly via measuring electronic signals from the extension or degradation of DNA. NGS is making big impacts on biomedical research, molecular diagnosis and personalized medicine. The hospitals are rapidly adopting the use of NGS to help to patients understand treatment with sequencing data. As NGS equipments are getting smaller and affordable, many hospitals are in the process of setting up NGS platforms. In this review, the progress of NGS technology development and action mechanisms of representative NGS equipments of each generation were discussed. The key technological advances in the commercialized platforms were presented. As NGS platforms are a great concern in the healthcare area, the latest trend in the use of NGS and the prospect of NGS in the future in diagnosis and personalized medicine were also discussed.

  • PDF