• Title/Summary/Keyword: Key Characteristics

Search Result 4,255, Processing Time 0.027 seconds

Experimental study on flow characteristics of downburst-like wind over the 3D hill using the wall jet and the impinging jet models

  • Bowen Yan;Kaiyan Xie;Xu Cheng;Chenyan Ma;Xiao Li;Zhitao Yan
    • Wind and Structures
    • /
    • v.39 no.2
    • /
    • pp.141-161
    • /
    • 2024
  • Engineering structures often suffer significant damage in the horizontal outflow region of downburst. The wall jet model, which simplifies the simulation device by only modeling the horizontal outflow region of downburst, has been widely employed to study downburst flow characteristics. However, research on downburst wind fields over hilly terrain using the wall jet model is limited, and the relationship between the downburst wind fields generated by wall jet and impinging jet remains unclear. This study investigates the flow characteristics of downburst-like wind over a 3D ideal hill model using wind tunnel tests with the wall jet and impinging jet models. The effects of hill height, slope, shape, and radial position on the speed-up ratio are examined using the wall jet flow. The results indicate that slope and radial position significantly affect the speed-up ratio, while hill height have a slight impact and shape have a minimal impact. Additionally, this study investigates the wind field characteristics over flat terrain using the impinging jet, and investigated the connection between the impinging jet model and the wall jet. Based on this connection, a comparison of the downburst-like flow characteristics over the same 3D ideal hill using the wall jet and impinging jet models is conducted, which further validates the reliability of the wall jet model for studying downburst flow characteristics over hilly terrain.

Stochastic analysis for uncertain deformation of foundations in permafrost regions

  • Wang, Tao;Zhou, Guoqing;Wang, Jianzhou;Zhao, Xiaodong;Yin, Leijian
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.589-600
    • /
    • 2018
  • For foundations in permafrost regions, the displacement characteristics are uncertain because of the randomness of temperature characteristics and mechanical parameters, which make the structural system have an unexpected deviation and unpredictability. It will affect the safety of design and construction. In this paper, we consider the randomness of temperature characteristics and mechanical parameters. A stochastic analysis model for the uncertain displacement characteristic of foundations is presented, and the stochastic coupling program is compiled by Matrix Laboratory (MATLAB) software. The stochastic displacement fields of an embankment in a permafrost region are obtained and analyzed by Neumann stochastic finite element method (NSFEM). The results provide a new way to predict the deformation characteristics of foundations in permafrost regions, and it shows that the stochastic temperature has a different influence on the stochastic lateral displacement and vertical displacement. Construction disturbance and climate warming lead to three different stages for the mean settlement of characteristic points. For the stochastic settlement characteristic, the standard deviation increases with time, which imply that the results of conventional deterministic analysis may be far from the true value. These results can improve our understanding of the stochastic deformation fields of embankments and provide a theoretical basis for engineering reliability analysis and design in permafrost regions.

Comparison of Dynamic Characteristics between Virtual Synchronous Machines Adopting Different Active Power Droop Controls

  • Yuan, Chang;Liu, Chang;Zhang, Xueyin;Zhao, Tianyang;Xiao, Xiangning;Tang, Niang
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.766-776
    • /
    • 2017
  • In modern power systems, high penetration of distributed generators (DGs) results in high stress on system stability. Apart from the intermittent nature of DGs, most DGs do not contribute inertia or damping to systems. As a result, a new control method named virtual synchronous machine (VSM) was proposed, which brought new characteristics to inverters such as synchronous machines (SMs). In addition, different active power droop controls for VSMs are being proposed in literatures. However, they are quite different in terms of their dynamic characteristics despite of the similar control laws. In this paper, mathematical models of a VSM adopting different active power droop controls are built and analyzed. The dynamic performance of the VSM output active power and virtual rotor angular frequency are presented for different models. The influences of the damping factor and droop coefficient on the VSM dynamic behaviors are also investigated in detail. Finally, the theoretical analysis is verified by simulations and experimental results.

Flat-bottomed design philosophy of Y-typed bifurcations in hydropower stations

  • Wang, Yang;Shi, Chang-zheng;Wu, He-gao;Zhang, Qi-ling;Su, Kai
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.1085-1105
    • /
    • 2016
  • The drainage problem in bifurcations causes pecuniary losses when hydropower stations are undergoing periodic overhaul. A new design philosophy for Y-typed bifurcations that are flat-bottomed is proposed. The bottoms of all pipe sections are located at the same level, making drainage due to gravity possible and shortening the draining time. All fundamental curves were determined, and contrastive analysis with a crescent-rib reinforced bifurcation in an actual project was conducted. Feasibility demonstrations were researched including structural characteristics based on finite element modeling and hydraulic characteristics based on computational fluid dynamics. The new bifurcation provided a well-balanced shape and reasonable stress state. It did not worsen the flow characteristics, and the head loss was considered acceptable. The proposed Y-typed bifurcation was shown to be suitable for pumped storage power stations.

Temperature distribution analysis of steel box-girder based on long-term monitoring data

  • Wang, Hao;Zhu, Qingxin;Zou, Zhongqin;Xing, Chenxi;Feng, Dongming;Tao, Tianyou
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.593-604
    • /
    • 2020
  • Temperature may have more significant influences on structural responses than operational loads or structural damage. Therefore, a comprehensive understanding of temperature distributions has great significance for proper design and maintenance of bridges. In this study, the temperature distribution of the steel box girder is systematically investigated based on the structural health monitoring system (SHMS) of the Sutong Cable-stayed Bridge. Specifically, the characteristics of the temperature and temperature difference between different measurement points are studied based on field temperature measurements. Accordingly, the probability density distributions of the temperature and temperature difference are calculated statistically, which are further described by the general formulas. The results indicate that: (1) the temperature and temperature difference exhibit distinct seasonal characteristics and strong periodicity, and the temperature and temperature difference among different measurement points are strongly correlated, respectively; (2) the probability density of the temperature difference distribution presents strong non-Gaussian characteristics; (3) the probability density function of temperature can be described by the weighted sum of four Normal distributions. Meanwhile, the temperature difference can be described by the weighted sum of Weibull distribution and Normal distribution.

Dynamics-Based Location Prediction and Neural Network Fine-Tuning for Task Offloading in Vehicular Networks

  • Yuanguang Wu;Lusheng Wang;Caihong Kai;Min Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3416-3435
    • /
    • 2023
  • Task offloading in vehicular networks is hot topic in the development of autonomous driving. In these scenarios, due to the role of vehicles and pedestrians, task characteristics are changing constantly. The classical deep learning algorithm always uses a pre-trained neural network to optimize task offloading, which leads to system performance degradation. Therefore, this paper proposes a neural network fine-tuning task offloading algorithm, combining with location prediction for pedestrians and vehicles by the Payne model of fluid dynamics and the car-following model, respectively. After the locations are predicted, characteristics of tasks can be obtained and the neural network will be fine-tuned. Finally, the proposed algorithm continuously predicts task characteristics and fine-tunes a neural network to maintain high system performance and meet low delay requirements. From the simulation results, compared with other algorithms, the proposed algorithm still guarantees a lower task offloading delay, especially when congestion occurs.

The Mediating Effect of Career Attitude Maturity on the Relationship Between Characteristics of Educational Training Based on NCS and Educational Transfer (NCS의 교육훈련특성이 교육전이에 미치는 영향 - 진로태도성숙을 매개변인으로 -)

  • KIM, Hee-Dong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.6
    • /
    • pp.1569-1592
    • /
    • 2015
  • The purpose of this study was to examine educational performance of key competencies in the situation by introducing NCS of junior college. And also, this study aimed at investigating the effects of individual characteristics on the relationship between characteristics of key competencies based on NCS and educational transfer. Data was collected from samples of 389 freshman and sophomore students who took the classes about communication skills and problem solving skills of key competencies. All of the students major in secretarial science. Based on the collected data, this study analyzed structural equating model, using AMOS Graphics. The result of analysis showed that there was a significant positive effect of educational training characteristics on educational transfer in some research models planned in this study. The findings in analysis of mediating effect showed that there was a full mediation effect of determinacy of career attitude maturity, and there was a partial mediation effect of readiness of career attitude maturity. Based on the result, this study proposed theoretical and practical ways considering individual characteristics for establishment and development of NCS.

Some Universal Characteristics of Intertidal Bacterial Diversity as Revealed by 16S rRNA Gene-Based PCR Clone Analysis

  • Shuang, J.L.;Liu, C.H.;An, S.Q.;Xing, Y.;Zheng, G.Q.;Shen, Y.F.
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1882-1889
    • /
    • 2006
  • A 16S rDNA clone library was generated to investigate the bacterial diversity in intertidal sediment from the coast of the Yellow Sea, P. R. China. A total of 102 clones were sequenced and grouped into 73 OTUs using a phylogenetic approach. The sequenced clones fell into 11 bacterial lineages: Proteobacteria, Bacteroidetes, Planctomycetes, Chloroflexi, Acidobacteria, Actinobacteria, Firmicutes, Spirochaetes, and candidate divisions of BRCl, OP3, and OP1l. Based on a phylogenetic analysis of these bacteria, together with the ten most closely related sequences deposited in the GenBank, it was concluded that intertidal bacteria are most likely derived from marine bacteria with a remarkable diversity, and some are particularly abundant in intertidal sediment.

Impact of axial power distribution on thermal-hydraulic characteristics for thermionic reactor

  • Dai, Zhiwen;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3910-3917
    • /
    • 2021
  • Reactor fuel's power distribution plays a vital role in designing the new generation thermionic Space Reactor Power Systems (SRPS). In this paper, the 1/12th SPACE-R's full reactor core was numerically analyzed with two kinds of different axial power distribution, to identify their impacts on thermal-hydraulic and thermoelectric characteristics. In the benchmark study, the maximum error between numerical results and existing data or design values ranged from 0.2 to 2.2%. Four main conclusions were obtained in the numerical analysis: a) The axial power distribution has less impact on coolant temperature. b) Axial power distribution influenced the emitter temperature distribution a lot, when the core power was cosine distributed, the maximum temperature of the emitter was 194 K higher than that of the uniform power distribution. c) Comparing to the cosine axial power distribution, the uniform axial power distribution would make the maximum temperature in each component of the reactor core much lower, reducing the requirements for core fuel material. d) Voltage and current distribution were similar to the axial electrode temperature distribution, and the axial power distribution has little effect on the output power.