• Title/Summary/Keyword: Key Agreement

Search Result 640, Processing Time 0.033 seconds

The Software Architecture of A Secure and Efficient Group Key Agreement Protocol

  • Lopez-Benitez, Noe
    • Journal of Convergence Society for SMB
    • /
    • v.4 no.3
    • /
    • pp.21-25
    • /
    • 2014
  • Group communications are becoming popular in Internet applications such as video conferences, on-line chatting programs, games, and gambling. Secure and efficient group communication is needed for message integration, confidentiality, and system usability. However, the conventional group key agreement protocols are too much focused on minimizing the computational overhead by concentrating on generating the common group key efficiently for secure communication. As a result, the common group key is generated efficiently but a failure in authentication allows adversaries to obtain valuable information during the group communication. After achieving the secure group communication, the secure group communication should generate the group key efficiently and distribute it to group members securely, so the balance of security and system usage must be considered at the same time. Therefore, this research proposes the software architecture model of a secure and efficient group communication that will be imbedded into networking applications.

  • PDF

An Efficient Group Key Agreement Using Hierarchical Key Tree in Mobile Environment

  • Cho, Seokhyang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.2
    • /
    • pp.53-61
    • /
    • 2018
  • In this paper, the author proposes an efficient group key agreement scheme in a mobile environment where group members frequently join and leave. This protocol consists of basic protocols and general ones and is expected to be suitable for communications between a mobile device with limited computing capability and a key distributing center (or base station) with sufficient computing capability. Compared with other schemes, the performance of the proposed protocol is a bit more efficient in the aspects of the overall cost for both communication and computation where the computational efficiency of the scheme is achieved by using exclusive or operations and a one-way hash function. Also, in the aspect of security, it guarantees both forward and backward secrecy based on the computational Diffie-Hellman (CDH) assumption so that secure group communication can be made possible. Furthermore, the author proves its security against a passive adversary in the random oracle model.

An Escrow-Free Two-party Identity-based Key Agreement Protocol without Using Pairings for Distinct PKGs

  • Vallent, Thokozani Felix;Yoon, Eun-Jun;Kim, Hyunsung
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.3
    • /
    • pp.168-175
    • /
    • 2013
  • Key escrow is a default property that is inherent in identity-based cryptography, where a curious private key generator (PKG) can derive a secret value shared by communicating entities in its domain. Therefore, a dishonest PKG can encrypt and decrypt ciphers or can carry out any attack on the communicating parties. Of course, the escrow property is not completely unwanted but is acceptable in other particular applications. On the other hand, in more civil applications, this key escrow property is undesirable and needs to be removed to provide maximum communication privacy. Therefore, this paper presents an escrow-free identity-based key agreement protocol that is also applicable even in a distinct PKG condition that does not use pairings. The proposed protocol has comparable computational and communicational performance to many other protocols with similar security attributes, of which their security is based on costly bilinear pairings. The protocol's notion was inspired by McCullagh et al. and Chen-Kudla, in regard to escrow-free and multi-PKG key agreement ideas. In particular, the scheme captures perfect forward secrecy and key compromise impersonation resilience, which were lacking in McCullagh et al.'s study, as well as all other desirable security attributes, such as known key secrecy, unknown key-share resilience and no-key control. The merit in the proposed protocol is the achievement of all required security requirements with a relatively lower computational overhead than many other protocols because it precludes pairings.

  • PDF

Cryptanalysis of Bresson-Chevassut-Essiari-Pointcheval′s Key Agreement Scheme for Low-Power Mobile Devices (Bresson-Chevassut-Essiari-Pointcheval의 저전력 모바일 장치를 위한 키 동의 방식의 안전성 분석)

  • Nam Junghyun;Lee Younggyo;Kim Seungioo;Won Dongho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.1
    • /
    • pp.67-76
    • /
    • 2005
  • Bresson et al. have recently proposed an efficient group key agreement scheme well suited for a wireless network environment. Although it is claimed that the proposed scheme is provably secure under certain intractability assumptions, we show in this paper that this claim is unfounded, breaking the allegedly secure scheme in various ways.

A Certificateless-based One-Round Authenticated Group Key Agreement Protocol to Prevent Impersonation Attacks

  • Ren, Huimin;Kim, Suhyun;Seo, Daehee;Lee, Imyeong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1687-1707
    • /
    • 2022
  • With the development of multiuser online meetings, more group-oriented technologies and applications for instance collaborative work are becoming increasingly important. Authenticated Group Key Agreement (AGKA) schemes provide a shared group key for users with after their identities are confirmed to guarantee the confidentiality and integrity of group communications. On the basis of the Public Key Cryptography (PKC) system used, AGKA can be classified as Public Key Infrastructure-based, Identity-based, and Certificateless. Because the latter type can solve the certificate management overhead and the key escrow problems of the first two types, Certificateless-AGKA (CL-AGKA) protocols have become a popular area of research. However, most CL-AGKA protocols are vulnerable to Public Key Replacement Attacks (PKRA) due to the lack of public key authentication. In the present work, we present a CL-AGKA scheme that can resist PKRA in order to solve impersonation attacks caused by those attacks. Beyond security, improving scheme efficiency is another direction for AGKA research. To reduce the communication and computation cost, we present a scheme with only one round of information interaction and construct a CL-AGKA scheme replacing the bilinear pairing with elliptic curve cryptography. Therefore, our scheme has good applicability to communication environments with limited bandwidth and computing capabilities.

Tree-based Group Key Agreement Protocol using Pairing (Pairing을 이용한 트리 기반 그룹키 합의 프로토콜)

  • 이상원;천정희;김용대
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.3
    • /
    • pp.101-110
    • /
    • 2003
  • Secure and reliable group communication is an increasingly active research area prompted by the growing popularity of many types of group-oriented and collaborative applications. The central challenge is secure and efficient group key management. While centralized methods are often appropriate for key distribution in large multicast-style groups, many collaborative group settings require distributed key agreement techniques. Most of prior group key agreement protocols have been focused on reducing the computational costs. One exception is STR protocol that optimizes communicational cost. On the other hand, it requires O(n) number of modular exponentiations. In this paper, we propose a new group key agreement protocol that modifies STR protocol by utilizing pairing based cryptography. The resulting protocol reduces computational cost of STR protocol while preserving the communication cost.

Efficient and Security Enhanced Evolved Packet System Authentication and Key Agreement Protocol

  • Shi, Shanyu;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.1
    • /
    • pp.87-101
    • /
    • 2017
  • As people increasingly rely on mobile networks in modern society, mobile communication security is becoming more and more important. In the Long Term Evolution/System Architecture Evolution (LTE/SAE) architecture, the 3rd Generation Partnership (3GPP) team has also developed the improved Evolved Packet System Authentication and Key Agreement (EPS AKA) protocol based on the 3rd Generation Authentication and Key Agreement (3G AKA) protocol in order to provide mutual authentication and secure communication between the user and the network. Unfortunately, the EPS AKA also has several vulnerabilities such as sending the International Mobile Subscriber Identity (IMSI) in plain text (which leads to disclosure of user identity and further causes location and tracing of the user, Mobility Management Entity (MME) attack), man-in-middle attack, etc. Hence, in this paper, we analyze the EPS AKA protocol and point out its deficiencies and then propose an Efficient and Security Enhanced Authentication and Key agreement (ESE-EPS AKA) protocol based on hybrid of Dynamic Pseudonym Mechanism (DPM) and Public Key Infrastructure (PKI) retaining the original framework and the infrastructure of the LTE network. Then, our evaluation proves that the proposed new ESE-EPS AKA protocol is relatively more efficient, secure and satisfies some of the security requirements such as confidentiality, integrity and authentication.

Key Agreement Algorithms Based on Co-cyclic Hadamard Matrices (코사이클 Hadamard 행렬을 이용한 키 동의 알고리즘)

  • Choe, Chang-Hui;Kim, Jeong-Su;Lee, Moon-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.3
    • /
    • pp.163-167
    • /
    • 2009
  • In this paper, we analyze key agreement algorithms based on co-cyclic Jacket matrices, and propose key agreement algorithms based on co-cyclic Hadamard matrices to fix the problem. The performance of our proposal is better than conventional one's and the construction of the matrices is very simple. Also time complexity of our proposal is proportional to the factor that determinees the size of the matrix, and the length of the key. So our proposal is fast and will be useful for the communcations of two or three users, especially for those have low computing power.

Attribute-base Authenticated Key Agreement Protocol over Home Network (홈네트워크 상에서 속성기반의 인증된 키교환 프로토콜)

  • Lee, Won-Jin;Jeon, Il-Soo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.5
    • /
    • pp.49-57
    • /
    • 2008
  • User authentication and key agreement are very important components to provide secure home network service. Although the TTA adopted the EEAP-PW protocol as a user authentication and key transmission standard, it has some problems including not to provide forward secrecy. This paper first provides an analysis of the problems in EEAP-PW and then proposes a new attribute-based authenticated key agreement protocol, denoted by EEAP-AK. to solve the problems. The proposed protocol supports the different level of security by diversifying network accessibility for the user attribute after the user attribute-based authentication and key agreement protocol steps. It efficiently solves the security problems in the EEAP-PW and we could support more secure home network service than the EEAP-AK.

An NTRU-based Key Agreement Scheme for Wireless Sensor Networks (무선센서네트워크에서의 NTRU에 기반한 키 교환 스킴)

  • Koo, Nam-Hun;Jo, Gook-Hwa;Go, Byeong-Hwan;Kwon, Soon-Hak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5C
    • /
    • pp.445-453
    • /
    • 2010
  • Because of heavy computational overheads, the use of public key cryptosystem in Wireless Sensor Networks seems unfeasible. But some recent researches show that certain public key cryptosystem can be used in WSN, in which the key and data size, power consumption is relatively small. The NTRU cryptosystem is suggested as one of the candidates of public key cryptosystems which can be used in wireless sensor networks. In this paper, we propose an efficient key agreement scheme using NTRU and we show that it can be used in wireless sensor networks.