• 제목/요약/키워드: Ketones.

검색결과 524건 처리시간 0.024초

Identification and Antibacterial Activity of Volatile Flavor Components of Cordyceps Militaris

  • Park, Mi-Ae;Lee, Won-Koo;Kim, Man-Soo
    • Preventive Nutrition and Food Science
    • /
    • 제4권1호
    • /
    • pp.18-22
    • /
    • 1999
  • Flavor characteristics of raw Cordyceps militaris significatntly different from those of dried one. In the case of raw Cordyceps militaris , major flavor components were composed of 5 alcohols, 3 ketones, 4 phenols, 9 alkanes , and 3 alkenes. The major alcohol was 1-octen-3-ol(22.56%, 1147.3% ng/ml), which contributed to the characteristic green flavor. Ketones (3-ocatone, inparticular )were present in the highest concentration in raw Cordyceps militaris . In contrast, major flavor components of dried Cordyceps militaris were composed of 4 alcohols, 4 ketones, 3 furans, 4 pyrizines, 2 dithiazines, 5 phenols , 8alkenes , 17 alkanes, and 8 fatty acids. Dried Cordyceps militaris had unique sweet aroma of sesame as wella s a milky flavor. Green or fruit flavor were rarely detected . In alkanes , 10 cosanes, component fo wax were present. Typical flavor components of alkanes such as $\beta$-caryophyllen and Δ-cadinene were also detected. Fatty acids of dried Cordyceps militaris ranged from myristic acid (14 :0) to linoleic acid (18 ; 2). The sweet aroma of dried Cordyceps militaris was mostly due to pryazines, dithaiazines, and furans. Two dithaizines were identified and characteristics of these flavor components was a roasted bacon flavor. Strong antibacterial acitivity was observed toward Vibrio spp. such as V. vulnificus, V.cholerae, V. parahaemlyticus. Relatively high antibacterial acitivity was shown toward Bacillus subtilis , B,cereus, Staphyllococcus aureus, and Corynebacterium xerosis.

  • PDF

단기숙성치즈 및 EMC 치즈의 휘발성 풍미성분 신속분석방법으로서 Pyrolysis/GC-Mass Spectrometry의 이용 (Pyrolysis/GC-Mass Spectrometry Analysis for Rapid Identification of Volatile Flavour Compounds of Accelerated Ripened Cheddar Cheese and Enzyme-Modified Cheese)

  • 박승용;허강칠;신중엽
    • 한국축산식품학회지
    • /
    • 제21권3호
    • /
    • pp.256-264
    • /
    • 2001
  • Pyrolysis/GC-mass spectrometry(Hewlet-Packard 5890GC/mass selective detector, 5971 BMSD), interfaced to a CDS Pyroprobe 1500 was optimized for rapid analysis of flavour compounds in Cheddar cheese. Twenty flavour compounds, including aldehydes(4), ketones(4), fatty acids(10), alcohol(1), and hydrocarbon(1), were identified from Cheddar cheeses. In total, Twenty-three flavour compounds aldehydes(2), ketones(8), alcohols(3), fatty acids(7), lactone(1), benzene derivative(1) and amide(1) were identified from two samples of accelerated-ripened Cheddar cheese treated with the proteolytic enzymes of Lactobacillus casei LGY. In total, Twenty-one flavour compounds; aldehydes(2), ketones(5), alcohols(2), fatty acids(11), and lactone(1) were identified from enzyme-modified cheese(EMC) treated with the combination of the proteolytic enzymes of Lactobacillus casei LGY and commercial endopeptidase or lipase. However, All the flavour compounds identified by pyrolysis/GC/MS in samples of ARC and EMC were not determined whether they are recognized as typical Cheddar flavour or not. More studies were requested on the development of methods for a rapid and convienent analysis of dairy fermented products using pyrolysis/GC-mass spectrometry.

  • PDF

Setaflash 장치를 이용한 산류와 케톤류의 폭발상한계 예측 (Prediction of Upper Explosion Limits (UEL) of Acids and Ketones by Using Setaflash Tester)

  • 하동명
    • 한국화재소방학회논문지
    • /
    • 제25권2호
    • /
    • pp.114-119
    • /
    • 2011
  • 폭발한계와 인화점은 가연성물질의 화재 및 폭발의 위험성을 결정하는데 중요한 연소특성치이다. 본 연구에서는 산류와 케톤류의 폭발상한계를 예측하기 위해서, 평형상태에서 인화점을 측정하는 Setaflash 밀폐식 장치(ASTM D3278)를 사용하여 이들의 상부인화점을 측정하였다. 측정된 상부인화점을 이용하여 Antoine 식에 의한 계산된 폭발상한계는 기존의 문헌값들보다 약간 낮게 나타났다. 본 연구에서 제시한 실험 및 예측 방법을 이용하여 다른 가연성물질의 폭발상한계 예측이 가능해 졌다.