• Title/Summary/Keyword: Kerosene engine

Search Result 193, Processing Time 0.024 seconds

Design of Cooling Channels of Preburners for Small Liquid Rocket Engines with Computational Flow and Heat Transfer Analysis

  • Moon, In-Sang;Lee, Seon-Mi;Moon, Il-Yoon;Yoo, Jae-Han;Lee, Soo-Yong
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.3
    • /
    • pp.233-239
    • /
    • 2011
  • A series of computational analyses was performed to predict the cooling process by the cooling channel of preburners used for kerosene-liquid oxygen staged combustion cycle rocket engines. As an oxygen-rich combustion occurs in the kerosene fueled preburner, it is of great importance to control the wall temperature so that it does not exceed the critical temperature. However, since the heat transfer is proportional to the speed of fluid running inside the channel, the high heat transfer leads to a trade-off of pressure loss. For this reason, it is necessary to establish a certain criteria between the pressure loss and the heat transfer or the wall surface temperature. The design factors of the cooling channel were determined by the computational research, and a test model was manufactured. The test model was used for the hot fire tests to prove the function of the cooling mechanism, among other purposes.

Conceptual Design Study of Short-Range Scramjet Vehicle (단거리용 스크램젯 비행체의 개념 설계 연구)

  • Yang, In-Young;Park, Chul;Choi, Sang-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.459-462
    • /
    • 2010
  • A conceptual design is carried out for a two-stage scramjet cruise vehicle flying at Mach 4 to investigate its feasibility. The design goal is to deliver a payload of 225 kg and to fly a range of about 500 km. It is accelerated to its cruising speed by the first stage using a solid rocket of 52.9 kN thrust 3.59 m in length. The second stage cruises using a kerosene-burning scramjet engine of 6.85 kN thrust, the vehicle being 7.55 m in length and 508 mm in width. The vehicle has a take-off weight of 2.1 tons, flies 500 km in 6 minutes at 17 km altitude.

  • PDF

A Study on the Exhaust Gas Created by Staged Combustion and Gas Generator Cycle LRE by Using CEA (CEA를 이용한 다단연소사이클 및 가스발생기 사이클 LRE 배출가스 성분 분석)

  • Moon, In-Sang;Moon, Il-Yoon;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.863-866
    • /
    • 2011
  • Recently environmental issue is more and more emphasized and 'Green Growth' became on of the key words of this Government. Based on this trend, the exhaust gases out of the gas generator cycle and the staged combustion cycle LRE whose propellants are kerosene and LOx were compared. For this purse, 8 tonf class of each cycle engine was designed and the amount and the components of the gases were investigated by using CEA. As expected, the staged combustion cycle engine generates less pollutants than the other cycle. In addition, the graphite that is generated by the gas generator can be reacted with the oxygen in the atmosphere creating additional pollutants.

  • PDF

Computational Analysis of an LOx Supply Line System of an Liquid Rocket Engine (액체로켓엔진 산화제 배관 시스템 전산유동해석)

  • Moon, In-Sang;Moon, Il-Yoon;Lee, Soo-Yong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.693-702
    • /
    • 2009
  • A computational fluid analysis was performed on an LOx line system of a liquid rocket engine. The model was created with 3D CAD and imbedded to the 3D CFD program. Before the full scale analysis on the system was carried out, each components with simplified models was analyzed to save time and cost. As a result, the inlet pressure of the gas generator should be compensated with a certain device unless the inlet pressure of the line system is sufficiently high. The flow pattern of the exit of the system was dependant upon the location of the orifice as well as the size. As a whole the line system analyzed met the requirements, and will be tested and confirmed after being manufactured.

Design of Turbopump+Gas Generator Coupled Test (터보펌프+가스발생기 연계시험 설계)

  • Kim, Seung-Han;Nam, Chang-Ho;Kim, Cheol-Woong;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.196-200
    • /
    • 2006
  • This paper describes the current development status of the major subsystems, turbopump and gas generator, for a turbopump-fed liquid oxygen-kerosene rocket engine system. As a secondary stage of the liquid rocket engine development test, turbopump-gas generator powerpack tests are planned. The schematics of the test hardware and the test facility for the TP+GG coupled test are presented. The results of a preliminary analysis for operating regimes of the TP+GG coupled test are also presented.

  • PDF

Design of Film-cooling Ring of The Engine Using Green Propellant And Thermal Analysis (친환경 추진제를 사용하는 액체로켓엔진의 막냉각링 설계 및 열해석)

  • Kim, Jung-Hoon;Lee, Jae-Won;Lee, Yang-Suk;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.119-122
    • /
    • 2009
  • The purpose of this study is to design of film-cooling ring for the small thrust rocket engine using green propellants(Hydrogen peroxide and kerosene). Cold flow test was carried out to measure the mass flow rate and atomizing characteristic. Required mass flow rate was obtained from thermal analysis of the engine, and measured flow rate 42.25g/s was in the range of permissible coolant flow rate. With the same mass flow rate, cooling ring with more hole and high velocity shows better spray pattern. The result of thermal analysis, cooling ring has enough cooling performance.

  • PDF

Development of a Software for a Conceptual Design of Gas Generator After Burning Liquid Rocket Engine (가스발생기 후연소 액체로켓엔진 개념설계 소프트웨어 개발)

  • Moon, In-Sang;Shin, Ji-Chul;Moon, Il-Yoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1132-1138
    • /
    • 2008
  • A program that can simulate gas generator after burning liquid rocket engines was developed along with presenting the characteristics of the engines. The program was written in Matlab and used GUI interface so that many users can use it without any difficulties. The results of the program was compared with the real engine which was developed by the LRE advanced country. Most of the parameters concurred within 1% error expect for the pressure at the turbopump. The reasons of the large differences were supposed that pressure decreases at the schematics were smaller than that of the real engines.

Study on the High Pressure Combustion Performance Characteristics of the 1st Row Pintle Injector using LOx-Kerosene as Propellant (LOx와 Kerosene을 추진제로 하는 1열 핀틀 분사기의 고압 연소성능 특성에 관한 연구)

  • Kang, Donghyuk;Kim, Jonggyu;Ryu, Chulsung;Ko, Youngsung
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.17-25
    • /
    • 2022
  • The pintle injector has many advantages in the key characteristics of a liquid rocket engine, such as combustion stability, combustion efficiency, and wide range of comprehensive thrust control, design and manufacture, and test fired under supercritical conditions. The pintle injector is manufactured with a rectangular, single-row orifice for thrust control and production considerations. In order to verify the combustion performance of the pintle injector and its potential as a commercial injector, the combustion characteristics were analyzed by varying the TMR (Total Momentum Ratio) and BF (Blockage Factor). The result of the hot firing test showed that the heat flux increased as TMR increased, and it confirmed that the characteristic velocity efficiency was more affected by BF than TMR. Suppose a single-row pintle injector with efficiency characteristics insensitive to changes in TMR can achieve high efficiency at low fuel differential pressure conditions. In that case, the variable pintle injector's design flexibility can be increase.

Combustion Performance of a Pintle Injector Rocket Engine with Canted Slit Shape by Characteristic Length and Total Momentum Ratio (Canted Slit 형상의 핀틀 인젝터 로켓엔진의 특성길이와 운동량비에 따른 연소성능)

  • Yu, Isang;Kim, Sunhoon;Ko, Youngsung;Kim, Sunjin;Lee, Janghwan;Kim, Hyungmo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.1
    • /
    • pp.36-43
    • /
    • 2017
  • In this study, a pintle injector rocket engine which uses kerosene and liquid oxygen as propellants was manufactured by collecting basic design data and establishing a design procedure. Combustion performance of the liquid rocket engine was investigated by characteristic velocity efficiency with characteristic length of the combustion chamber and total momentum ratio. As a result of hot fire tests, it showed that the engine had shorter characteristic length comparing to those of other type injectors, which was known as recommended value with the propellant combination. Also, the characteristic velocity efficiency was greatly affected by total momentum ratio and almost constant within 1.0~1.5.

Analysis of Pintle Tip Thermal Damage in the Combustion Hot Firing Test with a 1.5-tonf Class Liquid-Liquid Pintle Injector (1.5톤급 액체-액체 핀틀 분사기 연소시험에서의 핀틀 팁 열손상 원인 분석)

  • Kang, Donghyuk;Hwang, Dokeun;Ryu, Chulsung;Ko, Youngsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.1-9
    • /
    • 2020
  • Using kerosene and liquid oxygen, 1.5-tonf class liquid-liquid pintle injector with rectangular two-row orifice was designed and manufactured. The combustion test of the pintle injector was carried out to verify the combustion performance and combustion stability under a supercritical condition which is the actual operation condition of the liquid rocket engine. The combustion test result showed that the pintle tip was damaged by the high temperature combustion gas in the high-mixed ratio recirculation zone of the combustion chamber. To solve this problem, the insert nozzle was installed in the pintle injector to increase cooling performance at the pintle tip. As a result of the hot firing test, installation of the insert nozzle, AR and BF had a great effect on pintle tip cooling performance.