• 제목/요약/키워드: Kernel beam convolution

검색결과 7건 처리시간 0.025초

A study of detector size effect using Monte Carlo simulation

  • Park, Kwang-Yl;Yi, Byong-Yong;Vahc, Young W.
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2004년도 제29회 추계학술대회 발표논문집
    • /
    • pp.36-38
    • /
    • 2004
  • The detector size effect due to the spatial response of defectors is one critical source of inaccuracy in clinical dosimetry and has been a subject of numerous studies. Conventionally, the detector response kernel contains all of the influence that the detector size has on the measured beam profile. Various analytic models for this kernel have been proposed and studied in theoretical and experimental works. Here, we use a method to determine detector response kernel simply by using Monte Carlo simulation and convolution theory. Based on this numerical method and DOSIMETER, an EGS4 Monte Carlo code, the detector response for a Farmer type ion chamber embedded in water phantom is obtained. There exists characteristic difference in the simulated chamber readings between one with carbon graphite wall and the other with Acrylic wail. Using the obtained response and the convolution theory, we are planning to derive the detector response kernel numerically and remove detector size effect from measurements for 6MV, 10${\times}$l0cm2 and 0.5${\times}$10 cm2 photon beam.

  • PDF

Photon dose calculation of pencil beam kernel based treatment planning system compared to the Monte Carlo simulation

  • Cheong, Kwang-Ho;Suh, Tae-Suk;Kim, Hoi-Nam;Lee, Hyoung-Koo;Choe, Bo-Young;Yoon, Sei-Chul
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.291-293
    • /
    • 2002
  • Accurate dose calculation in radiation treatment planning is most important for successful treatment. Since human body is composed of various materials and not an ideal shape, it is not easy to calculate the accurate effective dose in the patients. Many methods have been proposed to solve the inhomogeneity and surface contour problems. Monte Carlo simulations are regarded as the most accurate method, but it is not appropriate for routine planning because it takes so much time. Pencil beam kernel based convolution/superposition methods were also proposed to correct those effects. Nowadays, many commercial treatment planning systems, including Pinnacle and Helax-TMS, have adopted this algorithm as a dose calculation engine. The purpose of this study is to verify the accuracy of the dose calculated from pencil beam kernel based treatment planning system Helax-TMS comparing to Monte Carlo simulations and measurements especially in inhomogeneous region. Home-made inhomogeneous phantom, Helax-TMS ver. 6.0 and Monte Carlo code BEAMnrc and DOSXYZnrc were used in this study. Dose calculation results from TPS and Monte Carlo simulation were verified by measurements. In homogeneous media, the accuracy was acceptable but in inhomogeneous media, the errors were more significant.

  • PDF

몬데카를로 시뮬레이션을 이용한 검출기의 크기효과 제거 (Deconvolution of Detector Size Effect Using Monte Carlo Simulation)

  • Park, Kwangyl;Yi, Byong-Yong;Young W. Vahc
    • 한국의학물리학회지:의학물리
    • /
    • 제15권2호
    • /
    • pp.100-104
    • /
    • 2004
  • 선량 측정기의 공간적인 반응특성 때문에 나타나는 detector의 크기효과는 임상적인 선량측정을 부정확하게 만드는 중요한 원인이기에 많은 연구의 대상이 되어왔다. 관례적으로 detector response kernel은 detector 자체의 크기가 측정한 방사선의 선량분포에 대해 미친 영향에 대한 정보를 포함하고 있다. 이 kernel에 대해 다양한 수학적 모델들이 제안되었고 실험적으로 이론적으로 연구되어왔다. 이 논문은 convolution이론과 Monte Carlo simulation만을 이용하여 detector의 kernel을 결정하는 방법을 제시한다. 이 수치해석적인 방법을 사용하여 물 phantom에 잠긴 Farmer형 ion chamber의 detector response kernel을 계산하였다. 계산된 kernel은 기존의 parabolic 모델의 특성과 Gaussian 모델의 특성을 동시에 나타내고 있다. 이 kernel과 deconvolution 방법을 사용하여 측정된 6MV, 10${\times}$10 $\textrm{cm}^2$, 0.5${\times}$10 $\textrm{cm}^2$ 광자선으로부터 크기효과를 제거하였다. 크기효과가 제거된 방사선의 선량분포는 꼬리부분을 제외하고는 film이나 pin-point ion chamber에 의해 측정된 결과와 유사한 선량분포를 나타냈다.

  • PDF

History of the Photon Beam Dose Calculation Algorithm in Radiation Treatment Planning System

  • Kim, Dong Wook;Park, Kwangwoo;Kim, Hojin;Kim, Jinsung
    • 한국의학물리학회지:의학물리
    • /
    • 제31권3호
    • /
    • pp.54-62
    • /
    • 2020
  • Dose calculation algorithms play an important role in radiation therapy and are even the basis for optimizing treatment plans, an important feature in the development of complex treatment technologies such as intensity-modulated radiation therapy. We reviewed the past and current status of dose calculation algorithms used in the treatment planning system for radiation therapy. The radiation-calculating dose calculation algorithm can be broadly classified into three main groups based on the mechanisms used: (1) factor-based, (2) model-based, and (3) principle-based. Factor-based algorithms are a type of empirical dose calculation that interpolates or extrapolates the dose in some basic measurements. Model-based algorithms, represented by the pencil beam convolution, analytical anisotropic, and collapse cone convolution algorithms, use a simplified physical process by using a convolution equation that convolutes the primary photon energy fluence with a kernel. Model-based algorithms allowing side scattering when beams are transmitted to the heterogeneous media provide more precise dose calculation results than correction-based algorithms. Principle-based algorithms, represented by Monte Carlo dose calculations, simulate all real physical processes involving beam particles during transportation; therefore, dose calculations are accurate but time consuming. For approximately 70 years, through the development of dose calculation algorithms and computing technology, the accuracy of dose calculation seems close to our clinical needs. Next-generation dose calculation algorithms are expected to include biologically equivalent doses or biologically effective doses, and doctors expect to be able to use them to improve the quality of treatment in the near future.

Restoration of Chest X-ray by Kalman Filter

  • Kim, Jin-Woo
    • Journal of information and communication convergence engineering
    • /
    • 제8권5호
    • /
    • pp.581-585
    • /
    • 2010
  • A grid was sandwiched between two cascaded imaging plates. Using a fan-beam X-ray tube and a single exposure scheme, the two imaging plates, respectively, recorded grid-less and grid type information of the object. Referring to the mathematical model of the Grid-less and grid technique, it was explained that the collected components whereas that of imaging plates with grid was of high together with large scattered components whereas that of imaging plate with grid was of low and suppressed scattered components. Based on this assumption and using a Gaussian convolution kernel representing the effect of scattering, the related data of the imaging plates were simulated by computer. These observed data were then employed in the developed post-processing estimation and restoration (kalman-filter) algorithms and accordingly, the quality of the resultant image was effectively improved.

Computed tomographic assessment of retrograde urohydropropulsion in male dogs and prediction of stone composition using Hounsfield unit in dogs and cats

  • Bruwier, Aurelie;Godart, Benjamin;Gatel, Laure;Leperlier, Dimitri;Bedu, Anne-Sophie
    • Journal of Veterinary Science
    • /
    • 제23권5호
    • /
    • pp.65.1-65.10
    • /
    • 2022
  • Background: Persistent uroliths after a cystotomy in dogs are a common cause of surgical failure. Objectives: This study examined the following: the success rate of retrograde urohydropropulsion in male dogs using non-enhanced computed tomography (CT), whether the CT mean beam attenuation values in Hounsfield Units (mHU) measured in vivo could predict the urolithiasis composition and whether the selected reconstruction kernel may influence the measured mHU. Methods: All dogs and cats that presented with lower urinary tract uroliths and had a non-enhanced CT preceding surgery were included. In male dogs, CT was performed after retrograde urohydropropulsion to detect the remaining urethral calculi. The percentage and location of persistent calculi were recorded. The images were reconstructed using three kernels, from smooth to ultrasharp, and the calculi mHU were measured. Results: Sixty-five patients were included in the study. The success rate of retrograde urohydropropulsion in the 45 male dogs was 55.6% and 86.7% at the first and second attempts, respectively. The predominant components of the calculi were cystine (20), struvite (15), calcium oxalate (8), and urate (7). The convolution kernel influenced the mHU values (p < 0.05). The difference in mHU regarding the calculus composition was better assessed using the smoother kernel. A mHU greater than 1,000 HU was predictive of calcium oxalate calculi. Conclusions: Non-enhanced CT is useful for controlling the success of retrograde urohydropropulsion. The mHU could allow a prediction of the calculus composition, particularly for calcium oxalate, which may help determine the therapeutic strategy.

연(鉛)필터의 투과선량을 이용한 15 MV X선의 에너지스펙트럼 결정과 조직선량 비교 (Compare the Clinical Tissue Dose Distributions to the Derived from the Energy Spectrum of 15 MV X Rays Linear Accelerator by Using the Transmitted Dose of Lead Filter)

  • 최태진;김진희;김옥배
    • 한국의학물리학회지:의학물리
    • /
    • 제19권1호
    • /
    • pp.80-88
    • /
    • 2008
  • 최근의 방사선 치료선량 계획시스템은 대체로 커널빔을 컨볼루션하여 조직선량을 구하고 있다. 본 연구에서는 광자선 빔에 따른 심부선량과 임의의 깊이에서 프로파일 선량을 구하기 위하여 반복적 수치해석을 통해 투과 필터에 의한 감쇠선량으로부터 에너지 스펙트럼을 구성하였다. 실험은 15 MV X선(Oncor, Siemens사)과 이온선량계 0.125 cc (PTW T31010)을 이용하여 납필터를 투과한 선량을 측정하여 이루어졌다. 15 MV X선의 에너지스펙트럼은 0.25 MeV 간격으로 납필터 0.51 cm에서 8.04 cm의 감쇠선량으로 실측치와 비교하여 구하였다. 실험 연산에서 15 MV X선의 최대유량은 3.75 MeV에서 나타났으며, 평균에너지는 4.639 MeV를 보였으며, 투과선량은 평균 0.6%의 오차인 반면에 최대오차는 납두께 5 cm에서 2.5%를 보였다. 조직선량은 에너지에 크게 의존하므로, 평탄형 필터의 중심과 Tangent 0.075와 0.125인 가장자리의 에너지를 구하였으며, 각각 4.211 MeV와 3.906 MeV로 나타났다. 심부선량과 프로파일 선량은 상업화로 공급되고 있는 선량계획시스템에 중심 선속과 가장자리의 각 에너지스펙트럼을 적용하여 구하여 실측선량률과 비교하였다. 생성된 심부선량 곡선은 조사면 $6{\times}6cm^2$에서 $30{\times}30cm^2$까지 실측치와 비교한 결과 1% 이내의 거의 일치하는 값을 얻었으며, 프로파일 곡선은 $10{\times}10cm^2$에서 1% 이내의 오차를 보였으나, $30{\times}30cm^2$와 같이 큰 조사면의 얕은 깊이에서는 2%의 오차를 보였다. 따라서 투과선량을 연산으로 구한 에너지 스펙트럼이 조직선량을 평가하는 데 상당히 적은 오차범위 내에서 정량적이고 정성적으로 얻을 수 있음을 알 수 있다.

  • PDF