• Title/Summary/Keyword: Kerma

Search Result 84, Processing Time 0.027 seconds

Evaluation of Patient Exposure Dose during Cardiac Electrophysiology Study under Various Conditions (심장 전기생리학 검사 시 조건 변화에 따른 환자 피폭 선량 평가)

  • Seong-Bhin Koh;Sung-Min Ahn
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.501-508
    • /
    • 2023
  • This study used a adult absorption dose phantom (CIRS model 701-G, USA) made of human equivalent material and the vascular imaging equipment Allura Xper FD 20 (Philips, Netherlands). Optically stimulated luminescent dosimeters (OSLD) were inserted into the anatomical positions corresponding to each organ, and the exposure dose was measured. Dose area product (DAP) and air kerma (AK) measured by the dose meter in the equipment were compared. Continuous imaging was performed at two angles for a total of 20 minutes, with a frame per seconds of 3.75 and 7.5 fps and an FOV of 42 cm, 37 cm, and 31 cm, respectively, under the conditions of fluoflavor I, II, and III, each selected for 5 repetitions. This study was found that selecting a lower fps was the most effective way to reduce patient exposure dose, and adjusting the fluoflavor was a good alternative method for reducing patient exposure dose at high fps. Therefore the method of condition change with the greatest dose reduction effect is to set the minimum FPS and can reduce patient exposure dose according to geometric conditions and fluoflavor characteristics.

Calculation of Dose Conversion Coefficients in the Anthropomorphic MIRD Phantom in Broad Unidirectional Beams of Monoenergetic Photons (MIRD 인형팬텀의 넓고 평행한 감마선빔에 대한 선량 환산계수 계산)

  • Chang, Jai-Kwon;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.1
    • /
    • pp.47-58
    • /
    • 1997
  • The conversion coefficients of effective dose per unit air kerma and equivalent dose per unit fluence were calculated by MCNP4A code for antero-posterior(AP) and postero- anterior(PA) incidence of broad, unidirectional beams of photons into anthropomorphic MIRD phantom. Calculations have been performed for 20 monoenergetic photons of energy ranging from 0.03 to 10 MeV. The conversion coefficients showed a good agreement with the corresponding values given in the draft publication of joint task group of ICRP and ICRU within 10%. The deviations may arise from the differences of geometry in the MIRD phantom and the ADAM/EVE phantoms, and the differences in the codes and cross-section data used. Inclusion of a specific oesophagus model results in effective dose slightly different(5% at most) from the effective doses obtained by adopting the equivalent doses for the thymus or pancreas. Deletion of the ULI from the remainder organ appeared not to be significant for the cases of photon dosimetry covered in this study.

  • PDF

Development of a Dose Calibration Program Based on an Absorbed Dose-to-Water Standard (물 흡수선량 표준에 기반한 선량교정 프로그램 개발)

  • 신동오;김성훈;박성용;서원섭;이창건;최진호;전하정;안희경;강진오
    • Progress in Medical Physics
    • /
    • v.14 no.3
    • /
    • pp.175-183
    • /
    • 2003
  • Absorbed dose dosimetry protocols of high energy photon and electron beams, which are widely used and based on an air kerma (or exposure) calibration factors, have somewhat complex formalism and limitations for improving dosimetric accuracy due to the uncertainty of the physical parameters used. Recently, the IAEA and the AAPM published the absorbed dose to water-based dosimetry protocols(IAEA TRS-398 and AAPM TG-51). The dose calibration programs for these two protocols were developed. This program for high energy photon and electron beams was also developed for users to use in a window environment using the Visual C++ language. The formalism and physical parameters of these two protocols were strictly applied to the program. The tables and graphs of the physical data, and the information of ion chambers were numericalized for their incorporation into a database. This program can be useful in developing new dosimetry protocols in Korea.

  • PDF

Study on the Compatibility for an Ir-192 Source Manufactured by Korea Atomic Energy Research Institute (KAERI) in GammaMed Brachytherapy Machine (한국원자력연구소에서 개발한 Ir-192 선원의 감마메드 치료기 호환성 연구)

  • Jeong, Dong-Hyeok;Lee, Kang-Kyoo;Kim, Soo-Kon;Moon, Sun-Rock
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.78-85
    • /
    • 2010
  • The compatibility with GammaMed-12i brachytherapy machine for an Ir-192 encapsulated source (IRRS20, KAERI, Korea) manufactured by Korea atomic energy research institute (KAERI) has been investigated. As a mechanical testing of compatibility, precise measurement of step movement with channels, measurement of curvature of radius for wire, and emergency return testing were performed. Periodic measurements of air kerma strength for 45 days were carried out to evaluate decay characteristics of Ir-192 radioisotope and comparison of dose distributions in phantom between KAERI and old sources previously used were performed by film dosimetry. KAERI source has a good compatibility with GammaMed12i machine as a result of mechanical testing. There are in good agreement with calculated values in activity characteristics and there were small differences in dose distributions around the source in comparison between KAERI and old source.

Intercomparison of the KAERI Reference Photon and Beta Radiation Measurements (한국원자력연구소 기준 광자 및 베타선장 측정의 국제상호비교)

  • Chang, Si-Yeong;Kim, Bong-Hwan;Kim, Jang-Lyul;McDonald, J.C.;Murphy, M.K.
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.4
    • /
    • pp.255-262
    • /
    • 1996
  • This paper describes the results of intercomparison measurements of KAERI reference photon and beta radiation fields between the KAERI and the PNNL(Pacific Northwest National Laboratory), recently performed at KAERI radiation calibration and dosimetry laboratory on the basis of the ANSI N13.11 criteria for personal dosimeter performance test. Each laboratory used her own radiation detectors or measurement devices traceable to her national primary standard in measuring the exposure rates for photon fields, the absorbed dose rates for beta radiation fields. The agreements in reference radiation measurements between two laboratories were found to be less than ${\pm}2.0%$ for photon fields, ${\pm}1.0%$ for beta radiation fields. Therefore, it could be concluded that KAERI reference radiation fields comply well with the international standard and thus can further serve as a national basis for the researches and developments in radiation protection dosimetry in Korea.

  • PDF

Dose Distribution&Calibration in HDR Intracavitary Irradiation for Uterine Cervical Cancer (자궁경부암의 강내치료를 위한 선량측정)

  • 김진기;김정수;김형진;권형철
    • Progress in Medical Physics
    • /
    • v.6 no.1
    • /
    • pp.13-18
    • /
    • 1995
  • Dose distribution of HDR-RALS source represents an inverse square law as the distance. Difference of measurement value and calculation value according of brachytherapy. Therefore, in HDR-RALS dose calibration and calculation have an important effect in treatment of uterine cervical cancer and absorbed dose of interesting points. In intracavitary therapy, particula attention is paid for precise determination of the doses to be applied. In this report, we have discussed that the calibration of a HDR-RALS, differences between calculation dose use of isodose chart and measurement in rectum. Dose rate calibration of radiation sources are obtained from air kerma and Г factor with calibraed ion chamber for cobalt source. and used semiconductor detector for compared with measurement in phantom. Eighteen patients were treated with a HDR-RALS for intrcavitarty irradiation (ICR) using a cobalt-cesium source. Repoductivity of dose measurements were 0.3 -1.1% in phantom. The means of dose distribution was -6- +21% between calculation of isodose chart and measurement of recyum, and was same mean value upper 6.3% in measurement value than calculation does.

  • PDF

A Study on the Proper Chest Exposure Conditions of Mobile Digital X-ray Unit by Exposure Index (Exposure Index를 이용한 이동형 디지털 X선 장치의 흉부촬영 적정노출조건에 관한 연구)

  • Kim, Jae-In;Lee, Yang-Sub;Jang, Dong-Soo;Jung, Min-Cheol;Bae, Seung-Ho;Lee, Kwan-Sub;Ha, Dong-Yoon
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.3
    • /
    • pp.139-144
    • /
    • 2011
  • The purpose of this report is recommending a standard indicator which reflects the radiation exposure that is incident on a detector after every exposure event and that reflects the noise levels present in the image data. The experiment was performed with mobile digital X-ray unit and used a acrylic phantom for exposure index measurement. Exposure modality was kVp, mAs, SID. After every exposure, make a data sheet for characteristic curve of detector response. The equipment performed Mobile digital X-ray unit provide the user with values ralated to the incident exposure(air kerma)to the digital detector. They are showed as a logarithmic function shaped. As a result, DEI means a relative measure of exposure to the detector, as compared to the expected exposure for a particular anatomical view. Radiographic technique is the combination of factors used to exposure an anatomical part to produce a high quality radiography and technique charts used most commonly by radiographers to produce consistently exposure level which patient dose can be kept acceptably low.

  • PDF

Evaluation of Linearity Air Kerma Applied to the IEC 60601-2-45 Standard in Mammographic X-ray (유방촬영용 X선 진단장치에서 IEC 60601-2-45 표준규격을 적용한 직선성 평가)

  • Hong, Dong-Hee;Jung, Hong-Ryang;Lim, Cheong-Hwan;Han, Beom-Hee;Han, Sang-Hyun;Lee, Sang-Ho;Mo, Eun-Hee;Kim, Ki-Jung;Lee, Mi-Hwa;You, In-Gyu
    • Journal of Digital Convergence
    • /
    • v.12 no.3
    • /
    • pp.339-344
    • /
    • 2014
  • The quality control items of mammography devices in South Korea do not include the linearity, which is required by international standards. The linearity is a requirement for the adjustment of radiation dose and radiation quality. This study tested the linearity, which was suitable for the IEC 60601-2-45 standard, of the 5 mammography devices. All showed adequate results. Consistent measurement management is required for more developed quality control in the future.

A Study of Radiation Doses to the Patient and Medical Team at Embolization Procedures

  • Castilho, Alvaro Vilas Boas;Szjenfeld, Denis;Nalli, Darcio;Fornazari, Vinicius;Moreira, Antonio Carlos;Medeiros, Regina Bitelli
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.3
    • /
    • pp.110-117
    • /
    • 2019
  • Background: This study aimed to estimate occupational doses and patient peak skin doses (PSDs) during interventional radiology procedures. Materials and Methods: We examined data from brain embolization (n = 30), hepatic chemoembolization (n = 50), and uterine embolization (n = 12). The PSDs were measured using radiochromic film around the patient's head (group 1) or abdominal/pelvic region (group 2). Acquisition technical data and kerma-area products (KAP) were also recorded. Occupational doses were measured using $Instadose^{TM}$ dosimeters near the left eye region (LER), chest, and left ankle. Results and Discussion: The third quartile (median) KAP values were $408.1(235.3)Gy{\cdot}cm^2$ for group 1 and $584.4(449.4)Gy{\cdot}cm^2$ for group 2. The average PSDs were greatest during vascular procedures, reaching 1,004.4 (786.4) mGy, and the highest PSD was 2,352.6 mGy (during hepatic chemoembolization). The third quartile (median) occupational doses were 0.35 (0.21) mSv at the LER, 0.25 (0.15) mSv at the chest, and 1.47 (0.64) mSv at the left ankle. Occupational doses at the LER were higher than at the chest, which highlights the importance of protective glasses and suspended shields. The occupational doses at the ankle region were also high, which highlights the importance of using a lead-lined curtain attached to the table. Conclusion: The results indicate that physicians can reach, for eye region, the weekly occupational dose limit after around 15 procedures, even when using proper protection. The average PSD values were below the threshold for tissue reactions, although the complexity of these procedures emphasises the importance of considering related risks.

Proposed Institutional Diagnostic Reference Levels in Computed and Direct Digital Radiography Examinations in Two Teaching Hospitals

  • Emmanuel Gyan;George Amoako;Stephen Inkoom;Christiana Subaar;Barry Rahman Maamah
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.1
    • /
    • pp.9-14
    • /
    • 2023
  • Background: The detectors of both computed radiography (CR) and direct digital radiography (DR) have a wide dynamic range that could tolerate high values of exposure factors without an adverse effect on image quality. Therefore, this study aims to assess patient radiation dose and proposes institutional diagnostic reference levels (DRLs) for two teaching hospitals in Ghana. Materials and Methods: CR and DR systems were utilized in this study from two teaching hospitals. The CR system was manufactured by Philips Medical Systems DMC GmbH, while the DR system was manufactured by General Electric. The entrance skin doses (ESDs) were calculated using the standard equation and the tube output measurements. Free-in-air kerma (µGy) was measured using a calibrated radiation dosimeter. The proposed institutional DRLs were estimated using 75th percentiles values of the estimated ESDs for nine radiographic projections. Results and Discussion: The calculated DRLs were 0.4, 1.6, 3.4, 0.5, 0.4, 1.1, 1.0, 1.2, and 1.7 mGy for chest posteroanterior (PA), lumbar spine anteroposterior (AP), lumbar spine lateral (LAT), cervical spine AP, cervical spine LAT, skull PA, pelvis AP, and abdomen AP, respectively in CR system. In the DR system, the values were 0.3, 1.6, 3.1, 0.4, 0.3, 0.7, 0.6, 0.9, and 1.3 for chest PA, lumbar spine AP, lumbar spine LAT, cervical spine AP, cervical spine LAT, skull PA, pelvis AP, and abdomen AP, respectively. Conclusion: Institutional DRLs in nine radiographic projections have been proposed for two teaching hospitals in Ghana for the first time. The proposed DRLs will serve as baseline data for establishing local DRLs in the hospitals and will be a valuable tool in optimizing patient doses.