• Title/Summary/Keyword: Karlodinium veneficum

Search Result 5, Processing Time 0.02 seconds

Detection of Fish Killing Dinoflagellates Cochlodinium polykrikoides and Karlodinium veneficum (Dinophyceae) in the East China Sea by Real-time PCR

  • Park, Tae-Gyu;Kang, Yang-Soon;Park, Young-Tae;Bae, Heon-Meen;Lee, Yoon
    • ALGAE
    • /
    • v.24 no.2
    • /
    • pp.105-110
    • /
    • 2009
  • The rDNAs of figh-killing dinoflagellates Cochlodinium polykrikoides and Karlodinium veneficum were detected from the East China Sea by species-specific real-time PCR probes. Sequence analysesusing the partial ITS sequences from the real-time PCR products showed identical sequences with C. Polykrikoides and K. veneficum, respectively and low expectation values (E-value) of less than 1e-5 suggesting the presence of these organisms in the East Ching Sea shelf water that flows into the Tsushima Strait and the Yellow Sea.

Temporal changes in the abundance of the fish-killing dinoflagellate Karlodinium veneficum (Dinophyceae) in Tongyeong, Korea

  • Park, Tae-Gyu;Ok, Yu-Ran;Park, Young-Tae;Lee, Chang-Kyu
    • ALGAE
    • /
    • v.26 no.3
    • /
    • pp.237-241
    • /
    • 2011
  • The toxic dinoflagellate Karlodinium veneficum has been implicated in numerous fish kill events around the world. Since this species commonly co-occurs with other morphologically similar dinoflagellates, field monitoring of this species in natural waters via light microscopy only has been problematic. In this study, we investigated temporal changes in K. veneficum's abundance in the waters of Obido, Tongyeong, using a species-specific real-time polymerase chain reaction (PCR) assay. The field survey, from April to December 2010, revealed K. veneficum occurred at low densities (12 to 425 cells $L^{-1}$) during this time and that cell numbers peaked in June (early summer in Korea), indicating this species generally occurs in the warmer season (mostly at $16.9-22.3^{\circ}C$ and 33.4-34.5‰) in the Obido area.

New Records of Five Unarmored Genera of the Family Gymnodiniaceae (Dinophyceae) in Korean Waters

  • Lee, Joon-Baek;Kim, Gyu-Beom
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.3
    • /
    • pp.273-288
    • /
    • 2017
  • An investigation focusing on the unrecorded and taxonomically undescribed indigenous has been done since 2006. Samples were collected from various sites in the coastal and offshore waters of Korea as well as around Jeju Island. Since 2008, 16 unrecorded species belonging to the family Gymnodiniaceae have been found. The species were as follows: Amphidinium thermaeum (2015), Cochlodinium convolutum (2015), C. strangulatum (2015), Gymnodinium abbreviatum (valid name: G. gracile), G. arenicola (2015), G. gracile (2015), G. dorsalisulcum (2015), G. microreticulatum (2014), G. micrum (2016) (valid name: Karlodinium micrum), G. pyrenoidosum (2016), G. simplex (2015), G. veneficum (2016) (valid name: Karlodinium veneficum), Gyrodinium aureum (2015), G. fusiforme (2015), G. dominans (2014), and Nusuttodinium latum (2016) (valid name: Amphidinium latum). (The numbers in parentheses refer to the year that the species was found). These species were newly recorded in Korean waters in this study.

Newly recorded unarmored dinoflagellates in the family Kareniaceae(Gymnodiniales, Dinophyceae) in brackish and coastal waters of Korea

  • Cho, Minji;Choi, Hojoon;Nam, Seung Won;Kim, Sunju
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.2
    • /
    • pp.236-244
    • /
    • 2021
  • Unarmored dinoflagellates, in the family Kareniaceae, include harmful or toxic bloom-forming species, which are associated with massive fish kills and mortalities of marine organisms worldwide. The occurrence and distribution of the toxigenic species in the family Kareniaceae were investigated in the brackish and coastal waters of Korea between July 2018 and October 2020. During the survey, we collected seven newly recorded species; Karenia papilionacea, Karlodinium digitatum, Karl. veneficum, Karl. zhouanum, Takayama acrotrocha, T. helix, and T. tasmanica. A total of fifteen strains of the seven taxa were successfully established as clonal cultures and examined using LM, SEM, and molecular phylogeny inferred from LSU rDNA sequences. Herein, we present the taxonomic information, morphological features, and molecular phylogenetic positions of the unrecorded dinoflagellate species collected from Korean coastal waters.

Changes in Phytoplankton Communities and Environmental Factors in Saemangeum Artificial Lake, South Korea between 2006 and 2009 (2006년~2009년 새만금호에서 식물플랑크톤 군집과 환경요인의 변화)

  • Choi, Chung Hyun;Jung, Seung Won;Yun, Suk Min;Kim, Sung Hyun;Park, Jong Gyu
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.3
    • /
    • pp.213-224
    • /
    • 2013
  • Between May 2006 and November 2009, we investigated the relationship between fluctuations in environmental factors and phytoplankton communities in Saemangeum Artificial Lake, South Korea. Nutrient concentrations in the lake increased because of the inflow of water from Mankyung and Dongjin Rivers during the summer rainy season; in particular, high concentrations were detected at an inner zone close to the estuaries. During the summer rainy season, salinity at the inner zone reduced more rapidly than that at the other zones, and it was similar to the changes in nutrient concentrations. Variations in phytoplankton communities were caused by fluctuations in environmental factors: the abundance of phytoplankton at the inner zone was higher than that at the other zones. Diatoms were the dominant species in the phytoplankton communities. A small centric diatom, Skeletonema costatum like species, was predominant, with a mean abundance of 19.5% in Saemangeum lake. Because of accelerated eutrophication in the lake, phytoplankton abundance increased continuously and the total number of species present in the community decreased. In particular, some dinoflagellates could intermittently cause red tides during low temperature and salinity conditions (at the inner zone). In 2006~2007, a red tide-forming dinoflagellate, Prorocentrum minimum, was the predominant species, while Heterocapsa triquetra, Karlodinium veneficum, and Heterocapsa rotundata were the newly recorded species in late 2008 to early 2009. Therefore, the dynamics of phytoplankton communities under the perennially eutrophic conditions in Saemangeum lake appear to be primarily affected by changes in water temperature and salinity. In particular, the growth of harmful algae may have been accelerated by the low salinity and temperature conditions during the spring season at the inner zone.