• Title/Summary/Keyword: Kappa analysis

Search Result 816, Processing Time 0.032 seconds

Study on the Analysis of β-lactoglobulin and κ-casein Genotypes of Cattle using Polymerase Chain Reaction (PCR 기법을 이용한 축우의 β-lactoglobulin 및 κ-casein 유전자형 분석에 관한 연구)

  • Sang, Byung Chan;Ryoo, Seung Heui;Lee, Sang Hoon;Song, Chi Eun;Nam, Myung Soo;Chon, Byung Soon
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.2
    • /
    • pp.216-224
    • /
    • 1998
  • This study was performed to offer the basic and applicable data for improvement of Korean cattle and dairy cattle, according to finding the genetic construction obtained from analysis of genetic polymorphisms of ${\beta}$-lactoglobulin and ${\kappa}$-casein loci related Korean cattle and Holstein cows using PCR-RFLP. Genomic DNA used in this study was prepared from the blood of 253 individuals of Korean cattle in Korean Native Cattle Improvement Center, NLCF, and the blood of 113 individuals of Holstein cows in National Livestock Research Institute. The results obtained are summarized as follows : 1. This study confirmed amplified products of 530bp and 262bp fragments obtained from the amplification of ${\beta}$-lactoglobulin and ${\kappa}$-casein loci in Korean cattle and Holstein breed by PCR. 2. The ${\beta}$-lactoglobulin AA genotype showed 153bp and 109bp fragments, and ${\beta}$-lactoglobulin AB genotype showed 153bp, 109bp, 79bp and 74bp fragments, and BB genotype showed 109bp, 79bp and 74bp fragments in amplified products of ${\beta}$-lactoglobulin loci with the restricted enzyme digestion of Hae III. 3. The ${\kappa}$-casein AA genotype showed a 530bp fragment, and ${\kappa}$-casein AB genotype showed 530bp, 344bp and 186bp fragments, and BB genotype showed 344bp and 186bp fragments in amplified products of ${\kappa}$-casein loci with the restricted enzyme digestion of Taq I. 4. On ${\beta}$-lactoglobulin genotypes and gene frequencies, Korean cattle were 6.72%, 26.09% and 67.19% for AA, AB and BB genotypes, and ${\beta}$-lactoglobulin A and B alleles were 0.197 and 0.803, and Holstein were 35.40%, 56.64% and 7.96% for AA, AB and BB genotypes, and ${\beta}$-lactoglobulin A and B alleles were 0.637 and 0.363, respectively. 5. On ${\kappa}$-casein genotypes and gene frequencies, Korean cattle were 46.25%, 39.13% and 14.62% for AA, AB and BB genotypes, and ${\kappa}$-casein A and B alleles were 0.658 and 0.342, and Holstein were 60.18% and 38.94% and 0.88% for AA, AB and BB genotypes, and ${\kappa}$-casein A and B alleles were 0.796 and 0.204, respectively. 6. As a consequence, the gene frequency was 0.197 and 0.803 for ${\beta}$-lactoglobulin A and B alleles, and 0.658 and 0.342 for ${\kappa}$-casein A and B alleles in Korea cattle, but was 0.637 and 0.363 for ${\beta}$-lactoglobulin A and B alleles, and 0.796 and 0.204 for ${\kappa}$-casein A and B alleles in Holstein, respectively.

  • PDF

A Numerical Analysis of Three-Dimensional Flow Within a Transonic Fan (천음속 팬의 3차원 유동에 관한 수치해석)

  • Chung, Juhyun;Ko, Sungho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.82-91
    • /
    • 1999
  • A numerical analysis based on the three-dimensional Reynolds-averaged Navier-Stokes equation has been conducted to investigate the flow within a NASA rotor 67 transonic fan. General coordinate transformations are used to represent the complex blade geometry and an H-type grid is used. The governing equations are solved using implicit LU-SGS scheme for the time-marching integration and a standard ${\kappa}-{\varepsilon}$ model is used with wall functions for the turbulence modeling. The computations are compared with the experimental data and a detailed study of the flow structures near peak efficiency and near stall is presented. The calculated overall aerodynamic efficiency and three-dimensional shock system agree well with the laser anemometer data.

A study on the pressure drop characteristics of plate and shell heat exchangers (Plate and Shell 열교환기의 압력강하 특성에 관한 연구)

  • Seo, Moo-Kyo;Kim, Young-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.25-30
    • /
    • 2000
  • Plate and shell heat exchanger(P&SHE) has been applied to the refrigeration and air conditioning systems as evaporators or condensers fur their high efficiency and compactness. The purpose of this study is to analyze the characteristics of pressure drop in plate and shell heat exchanger. An experiment for single phase (low pressure drop in plate and shell heat exchanger was performed. Also numerical work was conducted using the FLUENT code for $ {\kappa}-{\varepsilon}$ model. The dependence of friction factor on geometrical Parameters was numerically investigated. The study examines the internal flow and the pressure distribution in the channel of plate and shell heat exchanger. The results of CFD analysis compared with experimental data, and the difference of frictor factor in plate side and shell side are 10% and 12%, respectively. Therefore, the CFD analysis model is effectively predict the performance of plate and shell heat exchanger.

  • PDF

Numerical analyses of soil-mat foundation and space frame system

  • Daniel Thangaraj, D.;Ilamparuthi, K.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.3
    • /
    • pp.267-284
    • /
    • 2012
  • In most of the design offices, analysis of the frame is carried out without considering the effect of the rigidity of mat. The analysis of the superstructure without modelling the foundation properly and conversely analysing the foundation system without considering the stiffness of the superstructure may mislead the estimation of the forces. This paper examines the parameters, which affect the interaction and they are grouped into relative stiffness factors ${\kappa}_{rs}$ and ${\kappa}_{sb}$. An interaction analysis is performed for the five storeyed space frame of 3 bays ${\times}$ 5 bays, using ANSYS finite element code. The soil was treated as an isotropic, homogenous and elastic half space medium and the following conclusions were drawn from the analyses. The differential settlement is reduced due to interaction and the performance of the mat depends on ${\kappa}_{sb}$ values. The moments $M_x$ and $M_y$ in the corner column at all the storey levels are higher in the case of the interaction analysis than in the conventional analysis. The axial forces in the peripheral columns increased and to that extent, the inner column axial loads are reduced. In the beam, more variation is seen in the support moments than in the span moments.

NUMERICAL ANALYSIS OF TWO- AND THREE-DIMENSIONAL SUBSONIC TURBULENT CAVITY FLOWS (2차원과 3차원 아음속 공동 유동 특성에 대한 수치적 연구)

  • Choi, Hong-Il;Kim, Jae-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.187-193
    • /
    • 2007
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's ${\kappa}\;-\;{\omega}$ turbulence model. The cavity has the aspect ratios of 2.5, 3.5 and 4.5 for two-dimensional case, same aspect ratios with the W/D ratio of 2 for three-dimensional case. The Mach and Reynolds numbers are 0.53 and 1,600,000 respectively. The flow field is observed to oscillate in the "shear layer mode" with a feedback mechanism. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formula. The MPI(Message Passing Interface) parallelized code was used for calculations by PC-cluster.

  • PDF

NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTIC OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATIO (3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.297-301
    • /
    • 2008
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. The flow field is observed to oscillate in the "shear layer mode" with low aspect ratio. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's $\kappa$-$\omega$ turbulence model. The flow field is observed to oscillate in the shear layer mode" with large aspect ratio. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formul. The aero-acoustic wave analyzed with CPD(Correlation of Pressure Distribution).

  • PDF

NUMERICAL ANALYSIS OF THREE DIMENSIONAL SUPERSONIC CAVITY FLOW FOR THE VARIATION OF CAVITY SPANWISE RATIO (3차원 공동의 폭변화에 따른 초음속 유동에 대한 수치분석연구)

  • Woo, C.H.;Kim, J.S.;Choi, H.I.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.181-184
    • /
    • 2006
  • High-speed flight vehicle have various cavities. The supersonic cavity flow is complicated due to vortices, flow separation and reattachment, shock and expansion waves. The general cavity flow phenomena include the formation and dissipation of vortices, which induce oscillation and noise. The oscillation and noise greatly affect flow control, chemical reaction, and heat transfer processes. The supersonic cavity' flow with high Reynolds number is characterized by the pressure oscillation due to turbulent shear layer, cavity geometry, and resonance phenomenon based on external flow conditions, The resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, we performed numerical analysis of cavities by applying the unsteady, compressible three dimensional Reynolds-Averaged Navier-Stokes(RANS) equations with the ${\kappa}-{\omega}$ turbulence model. The cavity model used for numerical calculation had a depth(D) of 15mm cavity aspect ratio(L/D) of 3, width to spanwise ratio(W/D) of 1.0 to 5.0. Based on the PSD(Power Spectral Density) and CSD(Cross Spectral Density) analysis of the pressure variation, the dominant frequency was analyized and compared with the results of Rossiter's Eq.

  • PDF

NUMERICAL ANALYSIS OF THREE DIMENSIONAL SUPERSONIC CAVITY FLOW FOR THE VARIATION OF CAVITY SPANWISE RATIO (공동의 폭 변화에 따른 3차원 초음속 공동 유동연구)

  • Woo, C.H.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.62-66
    • /
    • 2006
  • High-speed flight vehicle have various cavities. The supersonic cavity flow is complicated due to vortices, flow separation, reattachment, shock waves and expansion waves. The general cavity flow phenomena includes the formation and dissipation of vortices, which induce oscillation and noise. The oscillation and noise greatly affect flow control, chemical reaction, and heat transfer processes. The supersonic cavity flow with high Reynolds number is characterized by the pressure oscillation due to turbulent shear layer, cavity geometry, and resonance phenomenon based on external flow conditions. The resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, we performed numerical analysis of cavities by applying the unsteady, compressible three dimensional Reynolds-Averaged Navier-Stokes(RANS) equations with the ${\kappa}-{\omega}$ turbulence model. The cavity model used for numerical calculation had a depth(D) of 15mm cavity aspect ratio (L/D) of 3, width to spanwise ratio(W/D) of 1.0 to 5.0. Based on the PSD(Power Spectral Density) and CSD(Cross Spectral Density) analysis of the pressure variation, the dominant frequency was analyzed and compared with the results of Rossiter's Eq.

NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTIC OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATIO (3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.297-301
    • /
    • 2008
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. The flow field is observed to oscillate in the "shear layer mode" with low aspect ratio. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's ${\kappa}-{\varepsilon}$ turbulence model. The flow field is observed to oscillate in the "shear layer mode" with large aspect ratio. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formul. The aero-acoustic wave analyzed with CPD(Correlation of Pressure Distribution).

  • PDF

Characteristics of Opioid k-Receptors in Rat and Guinea Pig Cortex (백서와 기니픽의 대뇌피질에서 Opioid Kappa 수용체의 특성에 관한 연구)

  • Kim, Kee-Won;Rho, Hye-Won;Kim, Hyoung-Il;Eun, Jae-Soon;Soh, Soo-Mi;Cho, Kyu-Park
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.2
    • /
    • pp.153-165
    • /
    • 1994
  • In this study, we tested the influences of several ${\kappa}$ opioid ligands on the $[^3H]diprenorphine$ binding in rat and guinea pig cortex membrane preparations. Using paradigm to block ${\mu}\;and\;{\delta}$ opioid receptors with $DAMGO(1{\mu}M)$ and $DPDPE(1{\mu}M)$, $[^3H]diprenorphine$ labeled ${\kappa}$ sites. Competition analysis in both rat and guinea pig cortex has shown a single population of $[^3H]diprenorphine$ binding site with different Kd values, respectively. There is a significant difference in Ki values of (-) WIN44441 and (+)WIN44441 in both rat and guinea pig cortex. Bremazocine, (-)ethylketocyclazocine, (-)cyclazocine, nor-binaltorphimine effectively inhibited the $[^3H]diprenorphine$ binding with different Ki values in rat and guinea pig cortex. U-69,593, U-50,488H and dynorphine-A (1-8) did not inhibit the $[^3H]diprenorphine$ binding in rat but in guinea pig cortex. Nor-binaltorphimine was a ligand discriminate the ${\kappa}_1$, and ${\kappa}_2$ receptor most effectively. We, also, examined the influence of Na ion and $GTP{\gamma}S$, a nonhydrolyzable guanine nucleotide analog, on the inhibition of $[^3H]diprenorphine$ binding by diprenorphine, (-)ethyl-ketocyclazocine, U-69,593 and bremazocine. By the replacement of NaCl with N-methy-D-glucamine or addition of $GTP{\gamma}S$, Ki values of diprenorpnine were not changed and that of ethylketocyclazocine were changed significantly in both rat and guinea pig cortex. The Ki value of bremazocine was decreased by removal of Na ion, and increased by $GTP{\gamma}S$, however, was not changed by any one of either. These results suggest that there are 2 kinds of subtypes of ${\kappa}$ opioid receptor, ${\kappa}_1$, and ${\kappa}_2$, showing different Ki values for various ${\kappa}$ opioid ligands, also, bremazocine possess the antagonistic property at ${\kappa}_2$ site which is dominant subtype of K receptor in rat cortex.

  • PDF