• Title/Summary/Keyword: Kaplan geometry

Search Result 2, Processing Time 0.015 seconds

Experiment with Axiom Propeller in Cavitation Tunnel

  • Seo, Kwang-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.3
    • /
    • pp.296-303
    • /
    • 2014
  • The Axiom propeller is a unique 3 bladed propeller and it enables to generate the same amount of thrust going ahead as it does going astern because of its 's' type skew-symmetric blade section. A earlier variant of the design (Axiom I propeller) performed a low propeller efficiency, maximum 35 % efficiency, and further blade outline design was carried out to achieve a higher efficiency. The optimized new blade outline (Axiom II propeller) has more conventional Kaplan geometry shape than Axiom I propeller. Model tests of open water performance and propeller cavitation for both propellers were conducted at Emerson Cavitation Tunnel in order to compare their performances. Experiment results revealed that Axiom II propeller provides a maximum 53 % efficiency and provides better efficiency and cavitation performance over the Axiom I propeller under similar conditions.

Development of The New High Specific Speed Fixed Blade Turbine Runner

  • Skotak, Ales;Mikulasek, Josef;Obrovsky, Jiri
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.392-399
    • /
    • 2009
  • The paper concerns the description of the step by step development process of the new fixed blade runner called "Mixer" suitable for the uprating of the Francis turbines units installed at the older low head hydropower plants. In the paper the details of hydraulic and mechanical design are presented. Since the rotational speed of the new runner is significantly higher then the rotational speed of the original Francis one, the direct coupling of the turbine to the generator can be applied. The maximum efficiency at prescribed operational point was reached by the geometry optimization of two most important components. In the first step the optimization of the draft tube geometry was carried out. The condition for the draft tube geometry optimization was to design the new geometry of the draft tube within the original bad draft tube shape without any extensive civil works. The runner blade geometry optimization was carried out on the runner coupled with the draft tube domain. The blade geometry of the runner was optimized using automatic direct search optimization procedure. The method used for the objective function minimum search is a kind of the Nelder-Mead simplex method. The objective function concerns efficiency, required net head and cavitation features. After successful hydraulic design the modal and stress analysis was carried out on the prototype scale runner. The static pressure distribution from flow simulation was used as a load condition. The modal analysis in air and in water was carried out and the results were compared. The final runner was manufactured in model scale and it is going to be tested in hydraulic laboratory. Since the turbine with the fixed blade runner does not allow double regulation like in case of full Kaplan turbine, it can be profitably used mainly at power plants with smaller changes of operational conditions or in case with more units installed. The advantages are simple manufacturing, installation and therefore lower expenses and short delivery time for turbine uprating.