• Title/Summary/Keyword: Kantorovich hypotheses

Search Result 9, Processing Time 0.02 seconds

ON THE NEWTON-KANTOROVICH AND MIRANDA THEOREMS

  • Argyros, Ioannis K.
    • East Asian mathematical journal
    • /
    • v.24 no.3
    • /
    • pp.289-293
    • /
    • 2008
  • We recently showed in [5] a semilocal convergence theorem that guarantees convergence of Newton's method to a locally unique solution of a nonlinear equation under hypotheses weaker than those of the Newton-Kantorovich theorem [7]. Here, we first weaken Miranda's theorem [1], [9], [10], which is a generalization of the intermediate value theorem. Then, we show that operators satisfying the weakened Newton-Kantorovich conditions satisfy those of the weakened Miranda’s theorem.

  • PDF

WEAK SUFFICIENT CONVERGENCE CONDITIONS AND APPLICATIONS FOR NEWTON METHODS

  • Argyros, Ioannis-K.
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.1-17
    • /
    • 2004
  • The famous Newton-Kantorovich hypothesis has been used for a long time as a sufficient condition for the convergence of Newton method to a solution of an equation in connection with the Lipschitz continuity of the Frechet-derivative of the operator involved. Using Lipschitz and center-Lipschitz conditions we show that the Newton-Kantorovich hypothesis is weakened. The error bounds obtained under our semilocal convergence result are finer and the information on the location of the solution more precise than the corresponding ones given by the dominating Newton-Kantorovich theorem, and under the same hypotheses/computational cost, since the evaluation of the Lipschitz also requires the evaluation of the center-Lipschitz constant. In the case of local convergence we obtain a larger convergence radius than before. This observation is important in computational mathematics and can be used in connection to projection methods and in the construction of optimum mesh independence refinement strategies.

A REFINED THEOREM CONCERNING THE CONDITIONING OF SEMIDEFINITE PROGRAMS

  • Argyros, Ioannis K.
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.305-312
    • /
    • 2007
  • Using a weaker version of the Newton-Kantorovich theorem [6] given by us in [3], we show how to refine the results given in [8] dealing with the analyzing of the effect of small perturbations in problem data on the solution. The new results are obtained under weaker hypotheses and the same computational cost as in [8].

CHEYSHEFF-HALLEY-LIKE METHODS IN BANACH SPACES

  • Argyros, Ioannis-K.
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.83-108
    • /
    • 1997
  • Chebysheff-Halley methods are probably the best known cubically convergent iterative procedures for solving nonlinear equa-tions. These methods however require an evaluation of the second Frechet-derivative at each step which means a number of function eval-uations proportional to the cube of the dimension of the space. To re-duce the computational cost we replace the second Frechet derivative with a fixed bounded bilinear operator. Using the majorant method and Newton-Kantorovich type hypotheses we provide sufficient condi-tions for the convergence of our method to a locally unique solution of a nonlinear equation in Banach space. Our method is shown to be faster than Newton's method under the same computational cost. Finally we apply our results to solve nonlinear integral equations appearing in radiative transfer in connection with the problem of determination of the angular distribution of the radiant-flux emerging from a plane radiation field.

SEMILOCAL CONVERGENCE THEOREMS FOR A CERTAIN CLASS OF ITERATIVE PROCEDURES

  • Ioannis K. Argyros
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.29-40
    • /
    • 2000
  • We provide semilocal convergence theorems for Newton-like methods in Banach space using outer and generalized inverses. In contrast to earlier results we use hypotheses on the second instead of the first Frechet-derivative. This way our Newton-Kantorovich hypotheses differ from earlier ones. Our results can be used to solve undetermined systems, nonlinear least square problems and ill-posed nonlinear operator equations.

A COMPARATIVE STUDY BETWEEN CONVERGENCE RESULTS FOR NEWTON'S METHOD

  • Argyros, Ioannis K.;Hilout, Said
    • The Pure and Applied Mathematics
    • /
    • v.15 no.4
    • /
    • pp.365-375
    • /
    • 2008
  • We present a new theorem for the semilocal convergence of Newton's method to a locally unique solution of an equation in a Banach space setting. Under a gamma-type condition we show that we can extend the applicability of Newton's method given in [12]. We also provide a comparative study between results using the classical Newton-Kantorovich conditions ([6], [7], [10]), and the ones using the gamma-type conditions ([12], [13]). Numerical examples are also provided.

  • PDF

AN IMPROVED UNIFYING CONVERGENCE ANALYSIS OF NEWTON'S METHOD IN RIEMANNIAN MANIFOLDS

  • Argyros, Ioannis K.
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.345-351
    • /
    • 2007
  • Using more precise majorizing sequences we provide a finer convergence analysis than before [1], [7] of Newton's method in Riemannian manifolds with the following advantages: weaker hypotheses, finer error bounds on the distances involved and a more precise information on the location of the singularity of the vector field.

APPROXIMATING SOLUTIONS OF EQUATIONS BY COMBINING NEWTON-LIKE METHODS

  • Argyros, Ioannis K.
    • The Pure and Applied Mathematics
    • /
    • v.15 no.1
    • /
    • pp.35-45
    • /
    • 2008
  • In cases sufficient conditions for the semilocal convergence of Newtonlike methods are violated, we start with a modified Newton-like method (whose weaker convergence conditions hold) until we stop at a certain finite step. Then using as a starting guess the point found above we show convergence of the Newtonlike method to a locally unique solution of a nonlinear operator equation in a Banach space setting. A numerical example is also provided.

  • PDF

CONVERGENCE THEOREMS FOR NEWTON'S AND MODIFIED NEWTON'S METHODS

  • Argyros, Ioannis K.
    • The Pure and Applied Mathematics
    • /
    • v.16 no.4
    • /
    • pp.405-416
    • /
    • 2009
  • In this study we are concerned with the problem of approximating a locally unique solution of an equation in a Banach space setting using Newton's and modified Newton's methods. We provide weaker convergence conditions for both methods than before [5]-[7]. Then, we combine Newton's with the modified Newton's method to approximate locally unique solutions of operator equations. Finer error estimates, a larger convergence domain, and a more precise information on the location of the solution are obtained under the same or weaker hypotheses than before [5]-[7]. The results obtained here improve our earlier ones reported in [4]. Numerical examples are also provided.

  • PDF