• 제목/요약/키워드: Kanai-Tajimi spectral density

검색결과 7건 처리시간 0.017초

AGV-induced floor micro-vibration assessment in LCD factories by using a regressional modified Kanai-Tajimi moving force model

  • Lee, C.L.;Su, R.K.L.;Wang, Y.P.
    • Structural Engineering and Mechanics
    • /
    • 제45권4호
    • /
    • pp.543-568
    • /
    • 2013
  • This study explores the floor micro-vibrations induced by the automated guided vehicles (AGVs) in liquid-crystal-display (LCD) factories. The relationships between moving loads and both the vehicle weights and speeds were constructed by a modified Kanai-Tajimi (MKT) power spectral density (PSD) function whose best-fitting parameters were obtained through a regression analysis by using experimental acceleration responses of a small-scale three-span continuous beam model obtained in the laboratory. The AGV induced floor micro-vibrations under various AGV weights and speeds were then assessed by the proposed regressional MKT model. Simulation results indicate that the maximum floor micro-vibrations of the target LCD factory fall within the VC-B and VC-C levels when AGV moves at a lower speed of 1.0 m/s, while they may exceed the acceptable VC-B level when AGV moves at a higher speed of 1.5 m/s. The simulated floor micro-vibration levels are comparable to those of typical LCD factories induced by AGVs moving normally at a speed between 1.0 m/s and 2.0 m/s. Therefore, the numerical algorithm that integrates a simplified sub-structural multi-span continuous beam model and a proposed regressional MKT moving force model can provide a satisfactory prediction of AGV-induced floor micro-vibrations in LCD factories, if proper parameters of the MKT moving force model are adopted.

TMD와 TLCD의 지진응답에 대한 제어성능 평가 연구 (Performance Evaluation of TMD and TLCD for Earthquake-Induced Response Control)

  • 김홍진;김형섭;민경원;오정근
    • 한국지진공학회논문집
    • /
    • 제7권5호
    • /
    • pp.85-91
    • /
    • 2003
  • 설치의 용이성과 경제성, 여러 다른 용도로의 전용 가능성, 유지보수의 용이성, 그리고 재동조의 편의성 등을 고려할 때 TLCD (Tuned Liquid Column Damper)는 기존에 건물의 응답제어에 많이 사용되는 TMD를 대체할 수 있는 감쇠장치라 할 수 있다. 본 논문에서는 TMD (Tuned Mass Damper)와 TLCD의 지진하중을 받는 구조물의 응답제어 성능평가에 관한 비교연구를 수행하였다. 성능비교분석 결과, 층간변위 제어성능에서는 TLCD가 TMD보다 우수한 성능을 보였고 가속도 제어성능에서는 서로 비슷한 것으로 나타났다. 또한 층간변위 제어에서는 저층에서 큰 제어성능을 발휘하고, 절대가속도 제어에서는 상층부에서 성능이 우수한 것으로 나타났다. 이것은 TLCD가 지진에 가장 문제가 되는 구조물의 안전성 및 거주자의 사용성에 있어서 효율적인 감쇠기라 할 수 있는 근거가 된다.

Stochastic response spectra for an actively-controlled structure

  • Mochio, Takashi
    • Structural Engineering and Mechanics
    • /
    • 제32권1호
    • /
    • pp.179-191
    • /
    • 2009
  • A stochastic response spectrum method is proposed for simple evaluation of the structural response of an actively controlled aseismic structure. The response spectrum is constructed assuming a linear structure with an active mass damper (AMD) system, and an earthquake wave model given by the product of a non-stationary envelope function and a stationary Gaussian random process with Kanai-Tajimi power spectral density. The control design is executed using a linear quadratic Gaussian control strategy for an enlarged state space system, and the response amplification factor is given by the combination of the obtained statistical response values and extreme value theory. The response spectrum thus produced can be used for simple dynamical analyses. The response factors obtained by this method for a multi-degree-of-freedom structure are shown to be comparable with those determined by numerical simulations, demonstrating the validity and utility of the proposed technique as a simple design tool. This method is expected to be useful for engineers in the initial design stage for structures with active aseismic control.

Probabilistic analysis of peak response to nonstationary seismic excitations

  • Wang, S.S.;Hong, H.P.
    • Structural Engineering and Mechanics
    • /
    • 제20권5호
    • /
    • pp.527-542
    • /
    • 2005
  • The main objective of this study is to examine the accuracy of the complete quadratic combination (CQC) rule with the modal responses defined by the ordinates of the uniform hazard spectra (UHS) to evaluate the peak responses of the multi-degree-of-freedom (MDOF) systems subjected to nonstationary seismic excitations. For the probabilistic analysis of the peak responses, it is considered that the seismic excitations can be modeled using evolutionary power spectra density functions with uncertain model parameters. More specifically, a seismological model and the Kanai-Tajimi model with the boxcar or the exponential modulating functions were used to define the evolutionary power spectral density functions in this study. A set of UHS was obtained based on the probabilistic analysis of transient responses of single-degree-of-freedom systems subjected to the seismic excitations. The results of probabilistic analysis of the peak responses of MDOF systems were obtained, and compared with the peak responses calculated by using the CQC rule with the modal responses given by the UHS. The comparison seemed to indicate that the use of the CQC rule with the commonly employed correlation coefficient and the peak modal responses from the UHS could lead to significant under- or over-estimation when contributions from each of the modes are similarly significant.

Influence of ground motion spatial variations and local soil conditions on the seismic responses of buried segmented pipelines

  • Bi, Kaiming;Hao, Hong
    • Structural Engineering and Mechanics
    • /
    • 제44권5호
    • /
    • pp.663-680
    • /
    • 2012
  • Previous major earthquakes revealed that most damage of the buried segmented pipelines occurs at the joints of the pipelines. It has been proven that the differential motions between the pipe segments are one of the primary reasons that results in the damage (Zerva et al. 1986, O'Roueke and Liu 1999). This paper studies the combined influences of ground motion spatial variations and local soil conditions on the seismic responses of buried segmented pipelines. The heterogeneous soil deposits surrounding the pipelines are assumed resting on an elastic half-space (base rock). The spatially varying base rock motions are modelled by the filtered Tajimi-Kanai power spectral density function and an empirical coherency loss function. Local site amplification effect is derived based on the one-dimensional wave propagation theory by assuming the base rock motions consist of out-of-plane SH wave or combined in-plane P and SV waves propagating into the site with an assumed incident angle. The differential axial and lateral displacements between the pipeline segments are stochastically formulated in the frequency domain. The influences of ground motion spatial variations, local soil conditions, wave incident angle and stiffness of the joint are investigated in detail. Numerical results show that ground motion spatial variations and local soil conditions can significantly influence the differential displacements between the pipeline segments.

Response of a frame structure on a canyon site to spatially varying ground motions

  • Bi, Kaiming;Hao, Hong;Ren, Weixin
    • Structural Engineering and Mechanics
    • /
    • 제36권1호
    • /
    • pp.111-127
    • /
    • 2010
  • This paper studies the effects of spatially varying ground motions on the responses of a bridge frame located on a canyon site. Compared to the spatial ground motions on a uniform flat site, which is the usual assumptions in the analysis of spatial ground motion variation effects on structures, the spatial ground motions at different locations on surface of a canyon site have different intensities owing to local site amplifications, besides the loss of coherency and phase difference. In the proposed approach, the spatial ground motions are modelled in two steps. Firstly, the base rock motions are assumed to have the same intensity and are modelled with a filtered Tajimi-Kanai power spectral density function and an empirical spatial ground motion coherency loss function. Then, power spectral density function of ground motion on surface of the canyon site is derived by considering the site amplification effect based on the one dimensional seismic wave propagation theory. Dynamic, quasi-static and total responses of the model structure to various cases of spatially varying ground motions are estimated. For comparison, responses to uniform ground motion, to spatial ground motions without considering local site effects, to spatial ground motions without considering coherency loss or phase shift are also calculated. Discussions on the ground motion spatial variation and local soil site amplification effects on structural responses are made. In particular, the effects of neglecting the site amplifications in the analysis as adopted in most studies of spatial ground motion effect on structural responses are highlighted.

Viaduct seismic response under spatial variable ground motion considering site conditions

  • Derbal, Rachid;Benmansour, Nassima;Djafour, Mustapha;Matallah, Mohammed;Ivorra, Salvador
    • Earthquakes and Structures
    • /
    • 제17권6호
    • /
    • pp.557-566
    • /
    • 2019
  • The evaluation of the seismic hazard for a given site is to estimate the seismic ground motion at the surface. This is the result of the combination of the action of the seismic source, which generates seismic waves, the propagation of these waves between the source and the site, and site local conditions. The aim of this work is to evaluate the sensitivity of dynamic response of extended structures to spatial variable ground motions (SVGM). All factors of spatial variability of ground motion are considered, especially local site effect. In this paper, a method is presented to simulate spatially varying earthquake ground motions. The scheme for generating spatially varying ground motions is established for spatial locations on the ground surface with varying site conditions. In this proposed method, two steps are necessary. Firstly, the base rock motions are assumed to have the same intensity and are modelled with a filtered Tajimi-Kanai power spectral density function. An empirical coherency loss model is used to define spatial variable seismic ground motions at the base rock. In the second step, power spectral density function of ground motion on surface is derived by considering site amplification effect based on the one dimensional seismic wave propagation theory. Several dynamics analysis of a curved viaduct to various cases of spatially varying seismic ground motions are performed. For comparison, responses to uniform ground motion, to spatial ground motions without considering local site effect, to spatial ground motions with considering coherency loss, phase delay and local site effects are also calculated. The results showed that the generated seismic signals are strongly conditioned by the local site effect. In the same sense, the dynamic response of the viaduct is very sensitive of the variation of local geological conditions of the site. The effect of neglecting local site effect in dynamic analysis gives rise to a significant underestimation of the seismic demand of the structure.