• Title/Summary/Keyword: Kanai-Tajimi 확률밀도

Search Result 2, Processing Time 0.016 seconds

Probability Distribution of Displacement Response of Structures with Friction dampers Excited by Earthquake Loads Generated Using Kanai-Tajimi Filter (Kanai-Tajimi 필터 인공지진 가진된 마찰형 감쇠를 갖는 구조물의 변위 응답 확률분포)

  • Youn, Kyung-Jo;Park, Ji-Hun;Min, Kyung-Won;Lee, Sang-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.623-628
    • /
    • 2007
  • The accurate peak response estimation of a seismically excited structure with frictional damping system(FDS) is very difficult since the structure with FDS shows nonlinear behavior dependent on the structural period, loading characteristics, and relative magnitude between the frictional force and the excitation load. Previous studies have estimated that by replacing a nonlinear system with an equivalent linear one or by employing the response spectrum obtained based on nonlinear time history and statistical analysis. In the case that an earthquake load is defined with probabilistic characteristics, the corresponding response of the structure with FDS has probabilistic distribution. In this study, nonlinear time history analyses were performed for the structure with FDS subjected to artificial earthquake loads generated using Kanai-Tajimi filter. An equation for the probability density function (PDF) of the displacement response is proposed by adapting the PDF of the normal distribution. Finally, coefficients of the proposed PDF are obtained by regression analysis of the statistical distribution of the time history responses. Finally the correlation between PDFs and statistical response distribution is presented.

Performance Evaluation of TMD and TLCD for Earthquake-Induced Response Control (TMD와 TLCD의 지진응답에 대한 제어성능 평가 연구)

  • 김홍진;김형섭;민경원;오정근
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.85-91
    • /
    • 2003
  • TLCD is a good alternative to TMD for control of structures because of its cost efficiency, ease of installation, little maintenance requirement, potential for multiple usage, and ease of re-tuning. In this study, the control performances of TMD and TLCD are evaluated and compared for seismically excited structures. Results show that TLCD is more effective than TMD for interstory drift control while TLCD is as effective as TMD for acceleration control. In special. it is shown that interstory drifts are maximally controlled in lower floors and accelerations are reduced most in upper floors. This indicates that TLCD is an effective controller for earthquake-induced structures in terms of structural safety as well as serviceability.