• Title/Summary/Keyword: Kamlet-Jacobs 방정식

Search Result 2, Processing Time 0.016 seconds

Theoretical Study on the High Energetic Properties of HMX/LLM-116 Cocrystals (HMX/LLM-116 공결정의 고에너지 특성에 관한 이론 연구)

  • Kim, Sung-Hyun;Ko, Yoo-Mi;Shin, Chang-Ho;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.1
    • /
    • pp.9-15
    • /
    • 2016
  • The theoretical investigation has been performed to predict detonation velocity, detonation pressure, and thermodynamic stability of HMX/LLM-116 cocrystal. All possible geometries of HMX, LLM-116, and cocrystal have been optimized at the B3LYP/cc-pVTZ level of theory. The binding energy for the trigger bond and cluster has been calculated to predict the thermodynamic stability. The MP2 binding energies were obtained using single point energy calculation at the B3LYP optimized geometries, and the density has been calculated from monte carlo integration. The detonation velocity and detonation pressure have been calculated using Kamlet-Jacobs equation, while enthalpy has been predicted at the CBS-Q level of theory.

Computational Study of Energetic Salts Based on the Combination of Nitrogen-rich Heterocycles (질소가 풍부한 헤테로 고리화합물에 기초한 에너지 염의 고에너지 물질 성능에 대한 이론 연구)

  • Woo, Je-Hun;Seo, Hyun-Il;Kim, SeungJoon
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.3
    • /
    • pp.185-193
    • /
    • 2022
  • The theoretical investigation has been performed to predict thermodynamic stability, density, detonation velocity, and detonation pressure of energetic salts produced by pairing of nitrogen-rich anions (tetrazine, oxadiazole etc.) and cations (NH3OH+, NH2NH3+, CH9N6+, C2H6N5+). All possible geometries and the binding energy for the trigger bond of energetic salts have been optimized at the B3LYP/cc-pVDZ level of theory. The detonation velocity and detonation pressure have been calculated using Kamlet-Jacobs equation, while enthalpy has been predicted at the G2MP2 level of theory. The predicted results reveal that the energetic salts including small sized NH3OH+(1) and NH2NH3+(2) cations increase detonation property. And also the energetic salts including more amino group (-NH2) such as CH9N6+(3) cation increase thermodynamic stability. These results provide basic information for the development the high energy density materials (HEDMs).