• Title/Summary/Keyword: Kalman Tracker

Search Result 39, Processing Time 0.024 seconds

Object Tracking Using Weighted Average Maximum Likelihood Neural Network (최대우도 가중평균 신경망을 이용한 객체 위치 추적)

  • Sun-Bae Park;Do-Sik Yoo
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.43-49
    • /
    • 2023
  • Object tracking is being studied with various techniques such as Kalman filter and Luenberger tracker. Even in situations, such as the one in which the system model is not well specified, to which existing signal processing techniques are not successfully applicable, it is possible to design artificial neural networks to track objects. In this paper, we propose an artificial neural network, which we call 'maximum-likelihood weighted-average neural network', to continuously track unpredictably moving objects. This neural network does not directly estimate the locations of an object but obtains location estimates by making weighted average combining various results of maximum likelihood tracking with different data lengths. We compare the performance of the proposed system with those of Kalman filter and maximum likelihood object trackers and show that the proposed scheme exhibits excellent performance well adapting the change of object moving characteristics.

Development of the Aircraft CO2 Measurement Data Assimilation System to Improve the Estimation of Surface CO2 Fluxes Using an Inverse Modeling System (인버스 모델링을 이용한 지표면 이산화탄소 플럭스 추정 향상을 위한 항공기 관측 이산화탄소 자료동화 체계 개발)

  • Kim, Hyunjung;Kim, Hyun Mee;Cho, Minkwang;Park, Jun;Kim, Dae-Hui
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.113-121
    • /
    • 2018
  • In order to monitor greenhouse gases including $CO_2$, various types of surface-, aircraft-, and satellite-based measurement projects have been conducted. These data help understand the variations of greenhouse gases and are used in atmospheric inverse modeling systems to simulate surface fluxes for greenhouse gases. CarbonTracker is a system for estimating surface $CO_2$ flux, using an atmospheric inverse modeling method, based on only surface observation data. Because of the insufficient surface observation data available for accurate estimation of the surface $CO_2$ flux, additional observations would be required. In this study, a system that assimilates aircraft $CO_2$ measurement data in CarbonTracker (CT2013B) is developed, and the estimated results from this data assimilation system are evaluated. The aircraft $CO_2$ measurement data used are obtained from the Comprehensive Observation Network for Trace gases by the Airliner (CONTRAIL) project. The developed system includes the preprocessor of the raw observation data, the observation operator, and the ensemble Kalman filter (EnKF) data assimilation process. After preprocessing the raw data, the modeled value corresponding spatially and temporally to each observation is calculated using the observation operator. These modeled values and observations are then averaged in space and time, and used in the EnKF data assimilation process. The modeled values are much closer to the observations and show smaller biases and root-mean-square errors, after the assimilation of the aircraft $CO_2$ measurement data. This system could also be used to assimilate other aircraft $CO_2$ measurement data in CarbonTracker.

Target Tracking Algorithm Using Fuzzy Neural Network (퍼지 신경망을 이용한 표적 추적 알고리듬)

  • Lee, Jin-Whan;Chang, Wook;Kwon, Ok-Kook;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.575-577
    • /
    • 1998
  • In this paper, we propose a hybrid target tracking algorithm which combine the conventional Kalman filter algorithm and the fuzzy neural network. Conventional methods are degraded in the presence of uncertanties and the environmental noise. These problems can be resolved by the proposed method. The training data for the proposed target tracker is obtained by the off-line simulation. Unlike other target trackers usging fuzzy inference system, our method can be easily integrated into the existing system. A numerical simulation is included to show the effectiveness and the feasibility of the proposed method.

  • PDF

Development of People Counting Algorithm using Stereo Camera on NVIDIA Jetson TX2

  • Lee, Gyucheol;Yoo, Jisang;Kwon, Soonchul
    • International journal of advanced smart convergence
    • /
    • v.7 no.3
    • /
    • pp.8-14
    • /
    • 2018
  • In the field of surveillance cameras, it is possible to increase the people detection accuracy by using depth information indicating the distance between the camera and the object. In general, depth information is obtained by calculating the parallax information of the stereo camera. However, this method is difficult to operate in real time in the embedded environment due to the large amount of computation. Jetson TX2, released by NVIDIA in March 2017, is a high-performance embedded board with a GPU that enables parallel processing using the GPU. In this paper, a stereo camera is installed in Jetson TX2 to acquire depth information in real time, and we proposed a people counting method using acquired depth information. Experimental results show that the proposed method had a counting accuracy of 98.6% and operating in real time.

UGR Detection and Tracking in Aerial Images from UFR for Remote Control (비행로봇의 항공 영상 온라인 학습을 통한 지상로봇 검출 및 추적)

  • Kim, Seung-Hun;Jung, Il-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.2
    • /
    • pp.104-111
    • /
    • 2015
  • In this paper, we proposed visual information to provide a highly maneuverable system for a tele-operator. The visual information image is bird's eye view from UFR(Unmanned Flying Robot) shows around UGR(Unmanned Ground Robot). We need UGV detection and tracking method for UFR following UGR always. The proposed system uses TLD(Tracking Learning Detection) method to rapidly and robustly estimate the motion of the new detected UGR between consecutive frames. The TLD system trains an on-line UGR detector for the tracked UGR. The proposed system uses the extended Kalman filter in order to enhance the performance of the tracker. As a result, we provided the tele-operator with the visual information for convenient control.

Experimental modeling and Robust Control of an Industrial Overhead Crane

  • Park, B.S.;T.G. Song;Lee, J.Y.;D.H. Hong;J.S. Yoon;E.S. Kang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.45.2-45
    • /
    • 2001
  • In case that the perfect model following conditions are not satisfied in the system, a perfect model-following controller is difficult to apply to the system. To deal with this problem, in this paper, a robust imperfect stable model-following controller is designed by combining time delay controller and sliding mode controller based on the concept of two degrees of freedom(2-DOF) controller design method. The experimental dynamic modeling of the commercial overhead crane with capacity of two tons is carried out. To remove the noise of the measuring signals from the swing angle measurement device and estimate the state of the swing angles of the transported object at each time instant, realtime tracker is designed using Kalman filter. The performance of the designed robust controller is tested through the commercial overhead. The experimental results show that the designed controller is robust and applicable to real systems.

  • PDF

A vehicle detection and tracking algorithm for supervision of illegal parking (불법 주정차 차량 단속을 위한 차량 검지 및 추적 기법)

  • Kim, Seung-Kyun;Kim, Hyo-Kak;Zhang, Dongni;Park, Sang-Hee;Ko, Sung-Jea
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.232-240
    • /
    • 2009
  • This paper presents a robust vehicle detection and tracking algorithm for supervision of illegal parking. The proposed algorithm is composed of four parts. First, a vehicle detection algorithm is proposed using the improved codebook object detection algorithm to segment moving vehicles from the input sequence. Second, a preprocessing technique using the geometric characteristics of vehicles is employed to exclude non-vehicle objects. Then, the detected vehicles are tracked by an object tracker which incorporates histogram tracking method with Kalman filter. To make the tracking results more accurate, histogram tracking results are used as measurement data for Kalman filter. Finally, Real Stop Counter (RSC) is introduced for trustworthy and accurate performance of the stopped vehicle detection. Experimental results show that the proposed algorithm can track multiple vehicles simultaneously and detect stopped vehicles successfully in the complicated street environment.

  • PDF

Small UAV tracking using Kernelized Correlation Filter (커널상관필터를 이용한 소형무인기 추적)

  • Sun, Sun-Gu;Lee, Eui-Hyuk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.27-33
    • /
    • 2020
  • Recently, visual object detection and tracking has become a vital role in many different applications. It spans various applications like robotics, video surveillance, and intelligent vehicle navigation. Especially, in current situation where the use of UAVs is expanding widely, detection and tracking to soot down illegal UAVs flying over the sky at airports, nuclear power plants and core facilities is becoming a very important task. The remarkable method in object tracking is correlation filter based tracker like KCF (Kernelized Correlation Filter). But it has problems related to target drift in tracking process for long-term tracking. To mitigate the target drift problem in video surveillance application, we propose a tracking method which uses KCF, adaptive thresholding and Kalman filter. In the experiment, the proposed method was verified by using monochrome video sequences which were obtained in the operational environment of UAV.

The Relative Position Estimate of the Moving Distributed Sources Using the Doppler Scanning Technique (도플러 스캐닝 기법을 이용한 이동하는 다중 음원의 상대 위치 추적 기법)

  • 노용주;윤종락;전재진
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.446-454
    • /
    • 2002
  • This paper presents the Doppler Scanning technique which enables us to detect the relative positions of moving distributed sources using Doppler frequency shift estimate when the moving source consists of distributed sources with different signature frequencies. Doppler frequency shifts of characteristic frequencies of machinery noise sources such as ship's generator and propeller, with tine along CPA (Closest Point of Approach of moving source) are unique, and can be functioned with respect to each source position. Therefore, this technique can be applied to estimate the relative geometrical positions between machinery noise sources. The Extended Kalman Filter (EKF) which has a high frequency resolution with high time resolution, is adopted for improving accuracy of Doppler frequency shift estimate geometric resolution of machinery positions since machinery noise sources show in general low frequency band characteristics with limited spacial distance. The performance of the technique is examined by the numerical simulations and is verified by the experiment using loudspeaker sources on the roof of the car.