• Title/Summary/Keyword: Kalman FIlter Estimation

Search Result 823, Processing Time 0.032 seconds

Comparative Analysis of TOA and TDOA method for position estimation of mobile station (이동국 위치 추정을 위한 TOA와 TDOA방법의 비교 분석)

  • 윤현성;호인석;이장호;변건식
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.167-172
    • /
    • 2000
  • This paper is aimed at developing an location tracking for mobile station employing currently available mobile communication network of cellular phone and PCS(Personal Communication System). When the location tracking of mobile stations is in services, the services such as Emergency-119, crime investigation, effective urban traffic management or the safety protection of Alzheimer's patients, ran be available. This paper is to track the mobile station in communication network in NLOS environment. To achieve reduction of the standard noise, Kalman filter is used. In terms of the distance, positions are located by using TOA and TDOA methods in the environment that removes NLOS bias in the measured data. And then smoothing method is used. to achieve reduction of the position error values

  • PDF

Localization and Navigation of a Mobile Robot using Single Ultrasonic Sensor Module (단일 초음파 센서모듈을 이용한 이동로봇의 위치추정 및 주행)

  • Jin Taeseok;Lee JangMyung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.2 s.302
    • /
    • pp.1-10
    • /
    • 2005
  • This paper presents a technique for localization of a mobile robot using a single ultrasonic sensor. The mobile robot is designed for operating in a well-structured environment that can be represented by planes, edges, corners and cylinders in the view of structural features. In the case of ultrasonic sensors, these features have the range information in the form of the arc of a circle that is generally named as RCD (Region of Constant Depth). Localization is the continual provision of a knowledge of position which is deduced from it's a priori position estimation. The environment of a robot is modeled into a two dimensional grid map. we defines a physically-based sonar sensor model and employs an extended Kalman filter to estimate position of the robot. The performance and simplicity of the approach is demonstrated with the results produced by sets of experiments using a mobile robot.

Implementation of Indoor Location Tracking System Using ETOA Algorithm in Non-Line-Of-Sight Environment (비가시선(NLOS) 환경에서 ETOA알고리즘을 이용한 실내 위치 추적 시스템 구현)

  • Kang, Kyeung-Sik;Choi, Goang-Seog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4B
    • /
    • pp.300-308
    • /
    • 2012
  • Many indoor location tracking technologies have been proposed. Generally indoor location tracking using TOA signal is used, there is a weak point that it's difficult to track the location due to obstacles like a refraction, reflection and dispersion of radio wave. In this paper, we apply ETOA(Estimated-TOA) algorithm in NLOS(Non-Line-Of-Sight) environment to solve above problem. In NLOS environment, TOA value between Beacon and Mobile node is predicted by ETOA algorithm and the tracking of indoor location is also possible to identify using two NLOS beacons of three beacons by this algorithm. We show that the proposed algorithm is accurate location tracking is accomplished using the applying the proposed algorithm to indoor moving robot and the inertia sensor of robot and Kalman filter algorithm.

Dynamic O-D Trip estimation Using Real-time Traffic Data in congestion (혼잡 교통류 특성을 반영한 동적 O-D 통행량 예측 모형 개발)

  • Kim Yong-Hoon;Lee Seung-Jae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.5 no.1 s.9
    • /
    • pp.1-12
    • /
    • 2006
  • In order to estimate a dynamic origin and destination demand between on and off-ramps in the freeways, a traffic flow theory can be used to calculate a link distribution proportion of traffics moving between them. We have developed a dynamic traffic estimation model based on the three-phase traffic theory (Kerner, 2004), which explains the complexity of traffic phenomena based on phase transitions among free-flow, synchronized flow and moving jam phases, and on their complex nonlinear spatiotemporal features. The developed model explains and estimates traffic congestion in terms of speed breakdown, phase transition and queue propagation. We have estimated the link, on and off-ramp volumes at every time interval by using traffic data collected from vehicle detection systems in Korea freeway sections. The analyzed results show that the developed model describes traffic flows adequately.

  • PDF

Development of the Aircraft CO2 Measurement Data Assimilation System to Improve the Estimation of Surface CO2 Fluxes Using an Inverse Modeling System (인버스 모델링을 이용한 지표면 이산화탄소 플럭스 추정 향상을 위한 항공기 관측 이산화탄소 자료동화 체계 개발)

  • Kim, Hyunjung;Kim, Hyun Mee;Cho, Minkwang;Park, Jun;Kim, Dae-Hui
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.113-121
    • /
    • 2018
  • In order to monitor greenhouse gases including $CO_2$, various types of surface-, aircraft-, and satellite-based measurement projects have been conducted. These data help understand the variations of greenhouse gases and are used in atmospheric inverse modeling systems to simulate surface fluxes for greenhouse gases. CarbonTracker is a system for estimating surface $CO_2$ flux, using an atmospheric inverse modeling method, based on only surface observation data. Because of the insufficient surface observation data available for accurate estimation of the surface $CO_2$ flux, additional observations would be required. In this study, a system that assimilates aircraft $CO_2$ measurement data in CarbonTracker (CT2013B) is developed, and the estimated results from this data assimilation system are evaluated. The aircraft $CO_2$ measurement data used are obtained from the Comprehensive Observation Network for Trace gases by the Airliner (CONTRAIL) project. The developed system includes the preprocessor of the raw observation data, the observation operator, and the ensemble Kalman filter (EnKF) data assimilation process. After preprocessing the raw data, the modeled value corresponding spatially and temporally to each observation is calculated using the observation operator. These modeled values and observations are then averaged in space and time, and used in the EnKF data assimilation process. The modeled values are much closer to the observations and show smaller biases and root-mean-square errors, after the assimilation of the aircraft $CO_2$ measurement data. This system could also be used to assimilate other aircraft $CO_2$ measurement data in CarbonTracker.

Performance Enhancement of the Attitude Estimation using Small Quadrotor by Vision-based Marker Tracking (영상기반 물체추적에 의한 소형 쿼드로터의 자세추정 성능향상)

  • Kang, Seokyong;Choi, Jongwhan;Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.444-450
    • /
    • 2015
  • The accuracy of small and low cost CCD camera is insufficient to provide data for precisely tracking unmanned aerial vehicles(UAVs). This study shows how UAV can hover on a human targeted tracking object by using CCD camera rather than imprecise GPS data. To realize this, UAVs need to recognize their attitude and position in known environment as well as unknown environment. Moreover, it is necessary for their localization to occur naturally. It is desirable for an UAV to estimate of his attitude by environment recognition for UAV hovering, as one of the best important problems. In this paper, we describe a method for the attitude of an UAV using image information of a maker on the floor. This method combines the observed position from GPS sensors and the estimated attitude from the images captured by a fixed camera to estimate an UAV. Using the a priori known path of an UAV in the world coordinates and a perspective camera model, we derive the geometric constraint equations which represent the relation between image frame coordinates for a marker on the floor and the estimated UAV's attitude. Since the equations are based on the estimated position, the measurement error may exist all the time. The proposed method utilizes the error between the observed and estimated image coordinates to localize the UAV. The Kalman filter scheme is applied for this method. its performance is verified by the image processing results and the experiment.

GAP Estimation on Arterial Road via Vehicle Labeling of Drone Image (드론 영상의 차량 레이블링을 통한 간선도로 차간간격(GAP) 산정)

  • Jin, Yu-Jin;Bae, Sang-Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.6
    • /
    • pp.90-100
    • /
    • 2017
  • The purpose of this study is to detect and label the vehicles using the drone images as a way to overcome the limitation of the existing point and section detection system and vehicle gap estimation on Arterial road. In order to select the appropriate time zone, position, and altitude for the acquisition of the drone image data, the final image data was acquired by shooting under various conditions. The vehicle was detected by applying mixed Gaussian, image binarization and morphology among various image analysis techniques, and the vehicle was labeled by applying Kalman filter. As a result of the labeling rate analysis, it was confirmed that the vehicle labeling rate is 65% by detecting 185 out of 285 vehicles. The gap was calculated by pixel unitization, and the results were verified through comparison and analysis with Daum maps. As a result, the gap error was less than 5m and the mean error was 1.67m with the preceding vehicle and 1.1m with the following vehicle. The gaps estimated in this study can be used as the density of the urban roads and the criteria for judging the service level.

Evaluation Methodology of Greenhouse Gas On-Line Monitoring on Freeway (고속도로 구간의 온실가스 On-Line 모니터링 산정방법)

  • Lee, Soong-bong;Chang, Hyun-ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.2
    • /
    • pp.92-104
    • /
    • 2017
  • Previous management for speed in road traffic system was aimed only to the improvement of mobility and safety. However, consideration for the aspect of environment and energy consumption efficiency was valued less than the former ones. Nevertheless, economical damage scope caused by climate change has been increasing and it is estimated that environmental value will be increased because of the change of external circumstances. In addition, policy for reducing carbon emission in transportation system was assessed as insufficient in improving the condition of traffic road since it only focused on the transition of private vehicle into public transportation and development of eco-friendly car. Now it is the time to prepare for the adaptation strategy and precaution for the increased number of private vehicle in Korea. For this, paradigm shift in traffic operation which includes the policy not only about the mobility but also about caring environment would be needed. It is needed to be able to monitor the actual amount of greenhouse gas in real time to reduce the amount of emitted greenhouse gas in the aspect of traffic management. In this research, a methodology which can build on-line greenhouse gas emission monitoring system by using real time traffic data and predicting the circumstance in next 5 minutes was suggested.

Position Estimation of Autonomous Mobile Robot Using Geometric Information of a Moving Object (이동물체의 기하학적 위치정보를 이용한 자율이동로봇의 위치추정)

  • Jin, Tae-Seok;Lee, Jang-Myung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.438-444
    • /
    • 2004
  • The intelligent robots that will be needed in the near future are human-friendly robots that are able to coexist with humans and support humans effectively. To realize this, robots need to recognize their position and posture in known environment as well as unknown environment. Moreover, it is necessary for their localization to occur naturally. It is desirable for a robot to estimate of his position by solving uncertainty for mobile robot navigation, as one of the best important problems. In this paper, we describe a method for the localization of a mobile robot using image information of a moving object. This method combines the observed position from dead-reckoning sensors and the estimated position from the images captured by a fixed camera to localize a mobile robot. Using the a priori known path of a moving object in the world coordinates and a perspective camera model, we derive the geometric constraint equations which represent the relation between image frame coordinates for a moving object and the estimated robot's position. Since the equations are based or the estimated position, the measurement error may exist all the time. The proposed method utilizes the error between the observed and estimated image coordinates to localize the mobile robot. The Kalman filter scheme is applied for this method. its performance is verified by the computer simulation and the experiment.

Towards 3D Modeling of Buildings using Mobile Augmented Reality and Aerial Photographs (모바일 증강 현실 및 항공사진을 이용한 건물의 3차원 모델링)

  • Kim, Se-Hwan;Ventura, Jonathan;Chang, Jae-Sik;Lee, Tae-Hee;Hollerer, Tobias
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.2
    • /
    • pp.84-91
    • /
    • 2009
  • This paper presents an online partial 3D modeling methodology that uses a mobile augmented reality system and aerial photographs, and a tracking methodology that compares the 3D model with a video image. Instead of relying on models which are created in advance, the system generates a 3D model for a real building on the fly by combining frontal and aerial views. A user's initial pose is estimated using an aerial photograph, which is retrieved from a database according to the user's GPS coordinates, and an inertial sensor which measures pitch. We detect edges of the rooftop based on Graph cut, and find edges and a corner of the bottom by minimizing the proposed cost function. To track the user's position and orientation in real-time, feature-based tracking is carried out based on salient points on the edges and the sides of a building the user is keeping in view. We implemented camera pose estimators using both a least squares estimator and an unscented Kalman filter (UKF). We evaluated the speed and accuracy of both approaches, and we demonstrated the usefulness of our computations as important building blocks for an Anywhere Augmentation scenario.