• 제목/요약/키워드: Kalina cycle

검색결과 17건 처리시간 0.028초

저온 열원의 활용을 위한 칼리나/흡수냉동 복합사이클의 성능 해석 (Performance Analysis of a Combined Cycle of Kalina and Absorption Refrigeration for Recovery of Low-Temperature Heat Source)

  • 김경훈;고형종;정영관
    • 한국수소및신에너지학회논문집
    • /
    • 제29권5호
    • /
    • pp.490-496
    • /
    • 2018
  • Recently, the power and refrigeration cogeneration based on Kalina cycle has attracted much attention for more efficient utilization of low-grade energy. This study presents a thermodynamic performance analysis of a cogeneration cycle of power and absorption refrigeration based on Kalina cycle. The cycle combines Kalina cycle (KCS-11) and absorption cycles by adding a condenser and an evaporator between turbine and absorber. The effects of ammonia mass fraction and separation pressure were investigated on the system performance of the system. Results showed that the energy utilization of the system could be greatly improved compared to the basic Kalina cycle.

칼리나 사이클을 기반으로 하는 동력 및 냉동 복합 사이클의 에너지 및 엑서지 성능 해석 (Energy and Exergy Analysis of Kalina Based Power and Cooling Combined Cycle)

  • 김경훈;정영관;고형종
    • 한국수소및신에너지학회논문집
    • /
    • 제31권2호
    • /
    • pp.242-249
    • /
    • 2020
  • The Kalina cycle (KC) is considered as one of the most efficient systems for recovery of low grade heat. Recently, Kalina based power and cooling cogeneration cycles (KPCCCs) have been suggested and attracted much attention. This paper presents an energy and exergy analysis of a recently suggested KPCCC with flexible loads. The cycle consists of a KC (KCS-11) and an aqua-ammonia absorption refrigeration cycle. By adjusting the splitting ratios, the cycle can be operated with four modes of pure Kalina cycle, pure absorption cooling cycle, Kalina-cooling parallel cycle, and Kalina-cooling series cycle. The effects of system variables and the operating modes on the energetic and exergetic performances of the system are parametrically investigated. Results show that the system has great potential for efficient utilization of low-grade heat source by adjusting loads of power and cooling.

Kalina 사이클의 효율 향상 방안 및 성능 비교 (Improvement of Efficiency of Kalina Cycle and Performance Comparison)

  • 윤정인;손창효;최광환;손창민;설성훈;이호생;김현주
    • 한국태양에너지학회 논문집
    • /
    • 제35권5호
    • /
    • pp.11-19
    • /
    • 2015
  • In this paper, EP-Kalina cycle applying liquid-vapor ejector and motive pump is newly proposed. In this EP-Kalina cycle, the liquid-vapor ejector is used to increase pressure difference between inlet and outlet of the turbine. Also the motive pump enhances the performance of liquid-vapor ejector, resulting in increase of system efficiency of OTEC cycles. The comparison cycles in this study are basic, Kalina, EKalina and EP-Kalina ones. The pump work, net power, APRe, APRc, TPP and system efficiency of each cycle are compared. In case of net power, EP-Kalina cycle is lowest among the cycles due to the application of the motive pump. But, the net power difference of cycles seems to be minor since the pump work of cycles is merely about 1kW, compared to turbine gross power of 20kW. The system efficiency of EP-Kalina cycle shows 3.22%, relatively 44% higher than that of basic OTEC cycle. Therefore, the system efficiency is increased by applying the liquid-vapor ejector and the motive pump. Additional performance analysis is necessary to optimize the proposed EP-Kalina cycle.

Kalina 사이클과 재생 Rankine 사이클을 이용한 해양 온도차 발진 시스템 (A Study of Ocean Thermal Energy Conversion Systems Using Kalina cycle and Regenerative Rankine cycle)

  • 신상호;정동수;김종보;서태범
    • 태양에너지
    • /
    • 제19권3호
    • /
    • pp.101-113
    • /
    • 1999
  • Thermodynamic performance of a simple Rankine cycle, regenerative Rankine cycle, and Kalina cycle for Ocean thermal Energy Conversion(OTEC) is evaluated under the same condition with various working fluids. The evaporator and condenser are modeled by a UA and LMTD method while the turbine and pump are modeled by considering isentropic efficiencies. As for the working fluids, R22, R134a, R32, propylene, ammonia are used for the Rankine cycles while ammonia/water and R32/R134a mixtures are used for Kalina cycle. Calculated results show that newly developed fluids such non-ozone depleting refrigerants as R134a and R32 perform as well as R22 and ammonia. The regenerative Rankine cycle showed a 1.2 to 2.8% increase in energy efficiency as compared to the simple Rankine cycle while the Kalina cycle with ammonia/water mixture showed a 1.8% increase in energy efficiency. The efficiency of the Kalina cycle with R32/R134a mixtures is the same as that of a simple Rankine cycle using R22. Therefore, the regenerative Rankine cycle turns out to be best choice for OTEC applications.

  • PDF

신재생에너지로 구동되는 칼리나 사이클 기반 삼중 병합 생산 시스템의 열역학적 성능 특성 (Thermodynamic Performance Characterictics of a Tri-Cogeneration System Based on Kalina Cycle Driven by Renewable Energy)

  • 한철호;김경훈;정영관
    • 한국수소및신에너지학회논문집
    • /
    • 제32권6호
    • /
    • pp.649-655
    • /
    • 2021
  • The recently proposed Kalina based power and cooling cogeneration cycles (KPCCCs) have shown improvement in the energy utilization of the system compared to the basic Kalina cycle. This paper suggests a combined tri-cogeneration system for power, heating and cooling based on the Kalina cycle. And thermodynamic performances of the suggested system based on the first and second thermodynamic laws are parametrically investigated with respect to the ammonia mass fraction and the boiler pressure. Results showed that the thermodynamic performance of the system could be greatly improved compared to the former KPCCCs.

칼리나 사이클을 이용한 지열발전 시스템의 시뮬레이션 (Simulation of a geothermal power generation system using the Kalina cycle)

  • 장기창;백영진;김민성;이영수;박성룡;나호상
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.626-629
    • /
    • 2008
  • In this study, a geothermal power generation system using the Kalina cycle was investigated by the simulation method. The Kalina cycle system can be used for the utilization of a low-temperature heat sources such as geothermal and industrial waste heat that are not hot enough to produce steam. The sea/river water can be considered as a cooling media. A steady-state simulation model was developed to analyze and optimize its performance. The model contains a turbine, a pump, an expansion valve and heat exchangers. The turbine and pump were modelled by an isentropic efficiency, while a condenser, an evaporator and a regenerative heat exchanger were modeled by UA-LMTD method with a counter-flow assumption. The effect of the ammonia fraction at the separator inlet on the cycle performance is investigated in detail.

  • PDF

Kalina 사이클 : 복합 발전용 고효율 하부사이클 (Kalina Cycle : Highly Efficient Bottoming Cycle In Connection With A Combined Power Plant)

  • 박영무
    • 에너지공학
    • /
    • 제2권2호
    • /
    • pp.154-170
    • /
    • 1993
  • 복합발전사이클은 서로 다른 온도조건에서 운전되는 두 개의 사이클을 열역학적으로 결합한 발전사이클로서 Fig. 1-(d) 처럼 고온부 사이클에서 배출되는 열량을 저온부 사이클에서 회수하여 전체 시스템효율을 개선하도록 설계되었다$^{1)}$ . 고온부에서 작동하는 사이클을 상부사이클(topping cycle or topper)이라고하며 저온부에서 작동하는 사이클을 하부사이클(bottoming cycle or bottomer)이라고 한다.

  • PDF

저온 열원 발전을 위한 암모니아-물 랭킨 사이클과 칼리나 사이클의 성능특성의 비교 해석 (Comparative Performance Analysis of Ammonia-Water Rankine Cycle and Kalina Cycle for Recovery of Low-Temperature Heat Source)

  • 김경훈;배유근;정영관;김세웅
    • 한국수소및신에너지학회논문집
    • /
    • 제29권2호
    • /
    • pp.148-154
    • /
    • 2018
  • This paper presents a comparative analysis of thermodynamic performance of ammonia-water Rankine cycles with and without regeneration and Kalina cycle for recovery of low-temperature heat source. Special attention is paid to the effect of system parameters such as ammonia mass fraction and turbine inlet pressure on the characteristics of the system. Results show that maximum net power can be obtained in the regenerative Rankine cycle for high turbine inlet pressures. However, Kalina cycle shows better net power and thermal efficiency for low turbine inlet pressures, and the optimum ammonia mass fractions of Kalina cycle are lower than Rankine cycles.

해양 온도차발전 시스템의 열역학 사이클에 대한 연구 (A Study on the Thermodynamic Cycle of OTEC system)

  • 김남진;신상호;천원기
    • 한국태양에너지학회 논문집
    • /
    • 제26권2호
    • /
    • pp.9-18
    • /
    • 2006
  • In this paper, the thermodynamic performance of OTEC cycle was examined. Computer simulation programs were developed for simple Rankine cycle, regenerative Rankine cycle, Kalina cycle, open cycle and hybrid cycle. For the simple Rankine cycle, the results show that newly developed fluids such as R410A and R32 that do not cause stratospheric ozone layer depletion perform as well as R22 and ammonia. Also, simple Rankine cycle OTEC power plant can practically generate electricity when the difference in warm and cold sea water inlet temperatures are greater than $14^{\circ}C$. The regenerative Rankine cycle showed a 1.5 to 2% increase in energy efficiency compared to the simple Rankine cycle while the Kalina cycle employing ammonia/water mixture showed a 2-to-3% increase in energy efficiency, and the overall cycle efficiencies of hybrid cycle and open cycle were 3.35% and 4.86%, respectively.

저등급 열원의 변환을 위한 칼리나 사이클과 유기 랭킨 사이클의 엑서지 성능의 비교 해석 (Comparative Exergy Analysis of Kalina and Organic Rankine Cycles for Conversion of Low-Grade Heat Source)

  • 김경훈;정영관;고형종
    • 한국수소및신에너지학회논문집
    • /
    • 제31권1호
    • /
    • pp.105-111
    • /
    • 2020
  • The organic Rankine cycle (ORC) and the Kalina cycle system (KCS) are being considered as the most feasible and promising ways to recover the low-grade finite heat sources. This paper presents a comparative exergetical performance analysis for ORC and Kalina cycle using ammonia-water mixture as the working fluid for the recovery of low-grade heat. Effects of the system parameters such as working fluid selection, turbine inlet pressure, and mass fraction of ammonia on the exergetical performance are parametrically investigated. KCS gives lower lower exergy destruction ratio at evaporator and higher second-law efficiency than ORC. The maximum exergy efficiency of ORC is higher than KCS.