• Title/Summary/Keyword: Ka-band Transponder

Search Result 37, Processing Time 0.022 seconds

OPTIMIZED CONFIGURATIONS OF KA-BAND TRANSPONDER SUBSYSTEM FOR ETRI'S SATCOM SYSTEM

  • Lee Yong-Min;Lee Seong-Pal;Park Jae-Woo
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.312-315
    • /
    • 2004
  • In order to optimize the configurations of Ka-band transponder subsystem, the tradeoff design has been performed iterately with emphasis on the improving performances of the payload system as well as effectiveness of Satellite Communication (SATCOM) system operation. It is necessary to allocate performance to the transponder equipments and to keep providing the main services. It begins with analyzing the requirements and allocating performance parameters by establishing budgets for electrical and mechanical characteristics. In this paper, introduction of SATCOM system and finally optimized Ka-band transponder configuration that is to be used for preliminary design will be mainly presented.

  • PDF

A Study on Output Multiplexer for Ka-Band Satellite Transponder (Ka 대역 위성 중계기용 출력 멀티플렉서에 관한 연구)

  • 이주섭;엄만석;박상준;이필용;염인복;박종흥
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.7
    • /
    • pp.706-712
    • /
    • 2004
  • This paper presents the design technique of output multiplexer(OMUX) for the Ka-band satellite transponder. Output multiplexer consists of low-pass filter(LPF), channel filter and manifold. Channel filters adopt dual-mode technique in design for mass and volume reduction and frequency response of channel filters is 4-pole elliptic response for high frequency selectivity. w-pass filters are designed to be of 13th order corrugated type for high rejection characteristic over reception band of satellite transponder. After initial design of channel filters and manifold, we optimized only a few design parameters for fast and easy optimization instead of optimizing all the design parameter. Measured results of a realized output umltiplexer for Ka-band satellite transponder show good agreement with the computed ones.

Performances Evaluation of Ka Band Communications Transponder for COMS (통신해양기상위성 Ka 대역 통신탑재체 성능검증)

  • Lee, Yong-Min;Lee, Seong-Pal
    • Journal of Satellite, Information and Communications
    • /
    • v.3 no.2
    • /
    • pp.43-47
    • /
    • 2008
  • COMS is the one of Korean hybrid geostationary satellite and is scheduled to be launched in 2009 by Arian V into $128^{\circ}$ E longitude. COMS is designed and manufactured for three main objectives which are Communications, Oceanographic, and Meteorological missions. It provides the weather monitoring, ocean monitoring, and Ka band satellite communication services by means of three different payloads. The Ka band communications payload was developed by Electronics and Telecommunications Research Institute (ETRI), and provides not only the digital transmission for the communication services against natural disaster but also digital transmission for the high speed multimedia services. This paper describes the overview of the electrical and mechanical design and measured performances of the Ka band communications transponder flight model (FM) for COMS.

  • PDF

Transponder Monitoring and Control System for COMS Ka-band Communication Payload (천리안위성 Ka대역 통신탑재체 제어관리시스템(TMC))

  • You, Moon-Hee;Chan, Jung-Won;Lee, Seong-Pal;Kim, Jae-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.1
    • /
    • pp.48-53
    • /
    • 2010
  • COMS (Communication, Ocean and Meteorological Satellite), which will be launched in June 23rd, 2010 and located on geostationary orbit at the latitude of $128.2^{\circ}E$, is a multi-function satellite for communications, ocean observation, and meteorology. In order to operate Ka-band communication payload effectively, which is one of the three payloads for COMS, the Transponder Monitoring and Control (TMC) system are necessary in ground systems. In this paper, the concepts and design of the TMC system for COMS Ka-band payload are described.

Development of EQM(Engineering Qualified Model) Local Oscillator far Ka-band Satellite Transponder (Ka-band위성 중계기용 국부발진기의 우주인증모델(EQM) 개발)

  • 류근관;이문규;염인복;이성팔
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.4
    • /
    • pp.335-344
    • /
    • 2004
  • A low phase noise EQM(Engineering Qualified Model) LO(Local Oscillator) has been developed for Ka-band satellite transponder. A VCDRO(Voltage Controlled Dielectric Resonator Oscillator) is also designed using a high impedance inverter coupled with dielectric resonator to improve the phase noise performances out of the loop bandwidth. The mechanical analysis fur housing and the thermal analysis fur circuit board are achieved. This EQM LO is applied to Ka-band satellite transponder of EQM level after environmental experiments for space application. The LO has the harmonic suppression characteristics above 52 ㏈c and requires low power consumption under 1.3 watts. The phase noise characteristics are exhibited as -101.33 ㏈c/㎐ at 10 ㎑ offset frequency and -114.33 ㏈c/㎐ at 100 ㎑ offset frequency, with the output power of 14.0 ㏈m${\pm}$0.17 ㏈ over the temperature range of -15∼+65$^{\circ}C$.

Design of Engineering Model Oscillator with Low Phase Noise for Ka-band Satellite Transponder (위상잡음을 개선한 Ka-band 위성 중계기용 Engineering Model 발진기의 설계)

  • 류근관;이문규;염인복;이성팔
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.1
    • /
    • pp.74-79
    • /
    • 2002
  • The EM(Engineering Model) VCO(Voltage Controlled Oscillator) is nonlinear designed for LO(Local Oscillator) of Ka-band satellite transponder. The microstripline coupled with dielectric resonator is implemented as a high impedance inverter to improve the phase noise, and the quality factor of resonant circuit can be transferred to active device with the enhanced loaded quality factor. The developed VCO has the oscillating tuning range of 9.7965~9.8032 GHz for the control voltage range of 0~12 V. This VCO requires the DC power of 8 V and 17 mA. The phase noise characteristics are -96.51 dBc/Hz @10 KHz and -116.5 dBc/Hz @100 KHz, respectively. And, the output power of 7.33 dBm is measured.

LNA Module Development for the Ka-Band Satellite Transponder (Ka-대역 위성중계기용 저잡음 증폭기 모듈 개발)

  • 유영근;염인복
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.323-326
    • /
    • 1998
  • A LNA(Low Nosise Amplifer) module for the Ka-band satellite transponder has been developed, which is composed of developed two MMIC chips and 50$\Omega$ line. This LNA exhibited noise figure less than 3.12dB, linear gain higher than 32dB from 30.085GHz to 30.885GHz frequency range. Temperature test from $20^{\circ}to$ $60^{\circ}C$ of the LNA Module showed very small noise figure and linear gain variation of 0.2 dB and 0.4dB.

  • PDF

A Dual-Mode Narrow-Band Channel Filter and Group-Delay Equalizer for a Ka-Band Satellite Transponder

  • Kahng, Sung-Tek;Uhm, Man-Seok;Lee, Seong-Pal
    • ETRI Journal
    • /
    • v.25 no.5
    • /
    • pp.379-386
    • /
    • 2003
  • This paper presents the design of a narrow-band channel filter and its group-delay equalizer for a Ka-band satellite transponder. We used an 8th order channel filter for high selectivity with an elliptic-integral function response and an inline configuration. We designed a 2-pole, reflection-type, group-delay equalizer to compensate for the steep variation of the group-delay at the output of the channel filter, keeping the thermal stability at ${\pm}7$ ns of group-delay variation at the band edges over 15-55$^{\circ}C$. We devised a new tuning technique using short-ended dummy cavities and used it for tuning both the filter and equalizer; this removes the necessity of additional tuning after the cavities are assembled. Through measurement, we demonstrate that the group-delay-equalized filter meets the equipment requirements and is appropriate for satellite input multiplexers.

  • PDF

A Study on Advanced Satellite Uplink Rain Attenuation Compensation using Digital Transponder of Next Military Satellite (차기 군위성체계의 디지털 위성중계기를 이용한 상향링크 강우감쇠에 대한 향상된 보상방안 연구)

  • Kim, Jung-Ho;Lee, Sue-Hyun;Kim, Bong-Su;Lee, Chang-Young;Song, Young-Joong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11B
    • /
    • pp.1696-1703
    • /
    • 2010
  • Increased demand for military satellite communications system and due to the depletion of resources of existing satellite communications frequencies, Ka-band and EHF-band satellite communication systems is growing demand for development. As a result, the study of rain attenuation mitigation for Ka/EHF-band frequencies has been achieved. The method to compensate rain attenuation on Ka-band(20/30) using the signal power measurement function in Digital Transponder of Next Military Satellite has been proposed in this paper. This method is more effective than generally used method by Beacon and UPC(uplink power control) in giving the precise rain attenuation measurement and correction.

Design of Local Oscillator with Low Phase Noise for Ka-band Satellite Transponder (Ka-band 위성 중계기용 저위상잡음 국부발진기의 설계 및 제작)

  • 류근관;이문규;염인복;이성팔
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.6
    • /
    • pp.552-559
    • /
    • 2002
  • The EM(Engineering Model) LO(Local Oscillator) is designed for Ka-band satellite transponder. The VCO(Voltage Controlled Oscillator) is implemented using a high impedance inverter coupled with dielectric resonator to improve the phase noise performance out of the loop bandwidth. The phase of VCO is locked to that of a stable OCXO(Oven Controlled Crystal Oscillator) by using a SPD(Sampling Phase detector) to improve phase noise performance in the loop bandwidth. This LO exhibits the harmonic rejection characteristics above 43.83 dBc and requires 15 V and 160 mA. The phase noise characteristics are performed as -102.5 dBc/Hz at 10 KHz offset frequency and -104.0 dBc/Hz at 100 KHz offset frequency, respectively, with the output power of 13.50 dBm$\pm$0.33 dB over the temperature range of -20~+7$0^{\circ}C$.