• Title/Summary/Keyword: Ka-Band

Search Result 370, Processing Time 0.023 seconds

Compact L Shape Shorted Pin Patch for Local Oscillator Port of X-, K-, Ka-Band Radar Detector (Radar Detector의 국부 발진단에 적용 가늘한 X, K, Ka 대역 L 모양의 소형 Shorted Pin Patch)

  • Ko, Seung-Tae;Kim, Han-Yong;Lee, Hyun-Taek;Park, Jae-Kyu;Lee, Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.854-861
    • /
    • 2007
  • In this paper, a compact L-shaped shorted pin patch to be used at local oscillator port in radar detector is proposed. Shorted pin patch operates as short-open cavity while conventional patch operates as open-open cavity. Shorted pins are L-shaped to obtain quarter wave length and three-quarter wave length resonance for the fundamental(X-band) and $2^{nd}(3^{rd})$(K- and Ka-band) mode resonance frequency, respectively. Thus, the proposed patch can be compact. It is also possible to operate at triple band(X-, K-, Ka-band) with small return loss in radar detector, It is expected that shorted pin patch could improve radar detector sensitivity.

Design and Fabrication of a Compact Ka-Band Synthesizer Module (소형화된 Ka-대역 주파수 합성기 모듈 설계 및 제작)

  • Kim, Hyun-Mi;Yang, Seong-Sik;Lee, Man-Hee;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.5 s.120
    • /
    • pp.511-521
    • /
    • 2007
  • In this paper, we designed and fabricated a Ka-band synthesizer module. In addition, the systematic layout procedure and the test procedure were presented for the construction of compact synthesizer. To implement the Ka-band synthesizer, X-band VCO is employed as VCO and its frequency was multiplied by 3 with frequency tripler. The fabricated frequency synthesizer shows a frequency tuning range of 500 MHz, output power of about 14 dBm, and a phase noise of -96.17 dBc/Hz at the 100 kHz offset frequency.

Performance verification of Ka-Band Array Antenna using Near-Field Test Method (근접전계 시험 기법을 활용한 Ka-대역 배열안테나 성능 검증)

  • Kim, Youngwan;Kwon, Junbeom;Kang, Yeonduk;Park, Jongkuk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.105-111
    • /
    • 2019
  • In this paper, a performance analysis of waveguide broad-wall slot array antenna for millimeter-wave seeker in Ka-band was performed as using near-field measurement. The measurement of slot array antenna was conducted in both far-field and near-field. And the validation of near-field test in millimeter band was confirmed. It was confirmed that the beam pattern characteristics including beam width and side lobe level of the slot array antenna that performed the verification were the same. Differenced in the side lobe level of azimuth and elevation beam pattern were verified to be less than 1dB. Additionally, the new antenna aperture distribution was extracted as using back-projection method modifying the near-field data and then introduced the method conducting performance analysis of array antenna.

Multi-band directional antenna for satellite communications (위성 통신용 다대역 안테나)

  • Cheong, Chi-Hyun;Jeong, Hye-Mi;Kim, Kun-Woo;Bae, Ki-Hyoung;Tae, Hyun-Sik;Evtyushkin, Gennadiy
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1223-1231
    • /
    • 2010
  • The design is presented for a SATCOM antenna capable of simultaneous multi-band (X/Ku/Ka-Band) communications without replacement of feed horns or change of other parts in the application as a ground satellite terminal for large data transfer. The antenna is the offset configuration and consists of a dual-band(X/Ka-band) feed horn, a single-band(Ku-band) feed horn, a frequency selective surface(FSS) sub-reflector and a parabolic main-reflector. The antenna has a main reflector defining a prime focus and a frequency selective surface sub-reflector defining an image focus. A dual-band feed and a single-band feed are provided at each of the prime focus and image focus. The antenna is designed using 3D EM simulator and the gains measured in X/Ku/Ka-band of the complete antenna assembly is more than 31.6dBi, 36.8dBi, 40.8dBi, and the cross polarization is 21.7dB, 26.6dB, 25.2dB, respectively.

A Study of Transceiver System for Ka-band Road Watch Radar (Ka 대역 도로 감시 레이더를 위한 송수신 시스템 연구)

  • Shin, Seung-Ha;Jun, Gye-Suk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11A
    • /
    • pp.933-940
    • /
    • 2011
  • In this paper, Ka-band transceiver for road watch radar system is designed and fabricated. The transceiver for road watch radar system is composed of waveform generator, frequency generator. IF transceiver and RF up/down converter. The transceiver especially has 3 different waveform mode for target detection range. The transceiver had over 150 MHz bandwidth in Ka-band and 22 dBm output power. The receiver gain and noise figure was 30 dB and 4 dB respectively. The receive dynamic range was 65.28dB and amplitude imbalance and phase imbalance of I/Q channel was 0.3 dB and 1.8 degree respectively. The transceiver meets the required electrical performances through the individual tests.

SSPA Development of 100W Class in Ka-band (Ka대역 100 W급 SSPA 개발)

  • Seo, Mihui;Jeong, Hae-Chang;Na, Kyoung-Il;Kim, Sosu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.129-135
    • /
    • 2022
  • In this paper, a 100 W SSPA in Ka-band was developed by combining 16 GaN MMICs which were 10 W amplifiers, respectively. The gate voltage of SSPA was controlled to minimize the effect of SSPA noise on the receiver during the receiving time. And the transmit power could be reduced about 20 dB to prevent the receiver from being saturated by a large signal from a nearby target. At 10%, 40% duty rato, the peak power and the power efficiency at center frequency were measured 52.4 dBm, 19.2%, and 51.6 dBm, 16.6% respectively.

Ka band Communication Payload System Technology of COMS (천리안 위성 Ka 대역 통신탑재체시스템 기술)

  • Lee, Seong-Pal;Jo, Jin-Ho;You, Moon-Hee;Choi, Jang-Sup;Ahn, Ki-Burm
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.75-81
    • /
    • 2010
  • COMS (Communication, Ocean and Meteorological Satellite) is the multi-purposed Korean geostationary satellite funded by four Korean government ministries, and is to supply communication services, ocean and weather observation for 7 years. As part of COMS, development of Ka band communication payload composed of microwave switching transponder and multi-horn antenna is sponsored by KCC (Korea Communications Commission) and developed by ETRI (Electronics and Telecommunications Research Institute). The purpose of Ka Payload development is to acquire space proven technology of Ka payload and to exploit advanced multimedia communication services. This paper aims to study development technology of Ka payload system through whole process of ETRI project. Also application of Ka payload will be dealt in this paper.

A Compact Ka-Band Doppler Radar Sensor for Remote Human Vital Signal Detection

  • Han, Janghoon;Kim, Jeong-Geun;Hong, Songcheol
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.4
    • /
    • pp.234-239
    • /
    • 2012
  • This paper presents a compact K-band Doppler radar sensor for human vital signal detection that uses a radar configuration with only single coupler. The proposed radar front-end configuration can reduce the chip size and the additional RF power loss. The radar front-end IC is composed of a Lange coupler, VCO, and single balanced mixer. The oscillation frequency of the VCO is from 27.3 to 27.8 GHz. The phase noise of the VCO is -91.2 dBc/Hz at a 1 MHz offset frequency, and the output power is -4.8 dBm. The conversion gain of the mixer is about 11 dB. The chip size is $0.89{\times}1.47mm^2$. The compact Ka-band Doppler radar system was developed in order to demonstrate remote human vital signal detection. The radar system consists of a Ka-band Doppler radar module with a $2{\times}2$ patch array antenna, baseband signal conditioning block, DAQ system, and signal processing program. The front-end module size is $2.5{\times}2.5cm^2$. The proposed radar sensor can properly capture a human heartbeat and respiration rate at the distance of 50 cm.

Design of Metamaterial-Inspired FSS Sub-Reflector for a Dual-Band Offset Cassegrain Reflector Antenna (이중대역 오프셋 카세그레인 반사판 안테나용 메타재질구조 모사 주파수 선택표면 부반사판 설계)

  • Kim, Hyeonsu;Kahng, Sungtek;Khattak, M. Kamran;Jeon, Jinsu;Park, Jeong-hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.2
    • /
    • pp.34-39
    • /
    • 2015
  • In this paper, a design of an offset Cassegrain antenna is proposed for Ku and Ka dual-band without increasing the antenna size. For Efficiency of computation and implementation, the frequency selectivity surface (FSS) of reflecting the Ka-band signal and passing the Ku-band is provided for the sub-reflector instead of the main reflector. The proposed FSS hyperboloid sub-reflector is the periodic structure of a unit cell comprising octagon metal rings embedded in the multiple layers. The proposed design is verified for 19 GHz and 45 GHz bands by the use of precise electromagneitc-field simulations.

The Design of Planar Beam Tilt Antenna for Satellite up-link Communication in Ka-band (Ka-band 위성통신 up-link 용 평면형 빔틸트 안테나의 설계)

  • Lim, Gye-jae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.3
    • /
    • pp.101-109
    • /
    • 2012
  • Because the installation problem of parabola antenna that is tilted to 45 degree when this antenna is installed at the area of middle latitude, the study on planar antenna in place of parabola antenna is made rapid progess. Especially, The development of the planar antenna for VSAT is needed depending on the increased Ka-band satellite communications. In this paper, in order to meet with these performances, an array antenna consisting of the vertical polarized waveguide longitudinal slots based on the leaky-wave mode of traveling wave antenna is proposed. Especially, for the lower sidelobe level, the design method of the radiation power distribution control using the different slot widths is proposed. An array antenna consisting of 32 leakywave waveguide antennas is showing 35.16 dBi of gain, 2.5 degree of beamwidth at azimuth, below than -30 dB of sidelobe level, 45.8 degree of beam tilt angle in center frequency 30.2 GHz.