• Title/Summary/Keyword: KSTAR.

Search Result 303, Processing Time 0.029 seconds

Study on quench detection of the KSTAR CS coil with CDA+MIK compensation of inductive voltages

  • An, Seok Chan;Kim, Jinsub;Ko, Tae Kuk;Chu, Yong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.55-58
    • /
    • 2016
  • Quench Detection System (QDS) is essential to guarantee the stable operation of the Korea Superconducting Tokamak Advanced Research (KSTAR) Poloidal Field (PF) magnet system because the stored energy in the magnet system is very large. For the fast response, voltage-based QDS has been used. Co-wound voltage sensors and balanced bridge circuits were applied to eliminate the inductive voltages generated during the plasma operation. However, as the inductive voltages are hundreds times higher than the quench detection voltage during the pulse-current operation, Central Difference Averaging (CDA) and MIK, where I and K stand for mutual coupling indexes of different circuits, which is an active cancellation of mutually generated voltages have been suggested and studied. In this paper, the CDA and MIK technique were applied to the KSTAR magnet for PF magnet quench detection. The calculated inductive voltages from the MIK and measured voltages from the CDA circuits were compared to eliminate the inductive voltages at result signals.

Study on Assembly of TF Coil Structure in KSTAR Tokamak (KSTAR 토카막 장치에서 TF 자석 구조물의 조립에 관한 검토)

  • Kim, K.M.;Choi, C.H.;Hong, K.H.;Yang, H.L.;Yu, I.K.;Her, N.I.;Sa, J.W.;Kim, H.K.;Kim, G.H.;Kim, S.T.;Kim, H.T.;Yang, J.S.;Bak, J.S.;Kim, C.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1262-1267
    • /
    • 2003
  • TF magnet structures are the main structural components in the KSTAR magnet systems to protect the superconducting coils from mechanical, electrical, and thermal loads. TF coil structure supports CS and PF coil system. The inter-coil structure contains adjustable shear keys and conical bolts to provide pre-loading in toroidal direction and to resist against in-plane and out-of-plane forces that are the most critical loads on the TF magnet system. The conical bolts and shear keys are specially designed to assemble easily and to provide a convenient accommodation for a good alignment. The connection plate that is one of the prototype fabrications had been manufactured to study adjustability of conical bolts and shear keys for assembly of TF coil structure. We could measure the misalignments at the keyways and conical holes with the misalignment measuring instrument.

  • PDF

The Development of Power Supply System for KSTAR Superconducting Coils (KSTAR 초전도 코일을 위한 전원 시스템의 개발)

  • Song I.H.;Ahn H.S.;Park K.W.;Jang G.Y.;Shin H.S.;Lee Y.W.;Choi C.H.;Cho M.H.
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.435-437
    • /
    • 2006
  • KSTAR (Korea Superconducting Tokamak Advanced Research) 장치는 Tokamak 개념의 핵융합 연구 장치로서 플라즈마를 가두기 위한 자장을 발생하는 토로이달 자장(Toroidal Field, TF) 코일과 플라즈마 발생 및 형상 조정을 위한 폴로이달 자장 (Poloidal Filed, PF) 코일로 구성되며, 초전도 코일을 이용한다. TF코일의 전원장치로는 40 kA급의 안정된 직류 전원장치가 필요하며, PF 코일의 전원장치로는 빠른 전류상승 및 피드백 기능을 갖춘 정밀 대전류 전원을 필요로 한다. 또한 초전도 코일의 ??????치현상 발생 시 코일과 전원장치 보호를 위한 대전류 직류 차단시스템을 필요로 한다. KSTAR 장치의 설계에 의하면 상하 7쌍의 초전도 PF 코일에 약 1MA/sec급의 고속 전류구동을 운전 시나리오에 따라 인가하여 핵융합 연구를 위한 플라즈마를 생성한다. 본 논문은 TF 및 PF 코일에 대전류를 인가하기 위해서 개발된 전원장치 (Power Supply, PS)에 관한 연구이다.

  • PDF

Repair Welding and Joint of KSTAR TF CICC (KSTAR TF Coil용 CICC 보수 용접 및 접합)

  • Lim, B.;Lee, S.;Kim, C.;Kim, D.;Choi, J.;Jung, W.;Park, H.;Chu, Y.;Park, K.;Baek, S.;Kim, K.
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.304-306
    • /
    • 2003
  • The KSTAR (Korea Superconducting Tokamak Advanced Research) superconducting magnet system which consists of 16 TF coils and 14 PF coils. The magnet system adopt a superconducting CICC (Cable-In-Conduit Conductor) type. The KSTAR TF CICC uses Nb$_3$Sn superconducting cable with Incoloy 908 conduit. To prepare for TF CICC jacket defect, repair welding of TF CICC is studied. And to confirm join method of TF CICC joint part, the welding method and the joint part design are also discussed.

  • PDF

KSTAR 중성입자빔 입사장치의 크라이오 배기계통 설계 개념

  • 인상렬;박미영;오병훈
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.36-36
    • /
    • 2000
  • KSTAR 토카막은 보조가열 장치로 2005년까지 1대(최종적으로는 2대)의 중성입자빔 입사장치(NBI)를 설치하여 장치의 기본 설계값에 도달할 예정이다. KSTAR NBI는 3개의 이온원을 가지고 있으며 총 수소 유입량은 70 Torr.L/s인 반면 고속 중성 입자빔량은 모두 11 Torr.L/s로 기체 배기량은 59 Torr.L/s에 달하고 압력은 장소에 따라 10-5~10-6 Torr로 유지되며 총배기속도가 1~2$\times$106 L인 펌프가 필요하다. 이때 크라이오 펌프(cryopump) 방식이 거의 유일한 해결책이라고 할 수 있다. 크라이오 펌프는 고속 입자빔 수송로의 양편에 각각 설치되는데 총면적 30m2 내외의 극저온 냉각판(cryo-pnael)들과 이를 상온 열복사로부터 보호하기 위한 열차폐(thermal shield) 및 흡기구 배플(baffle), 그리고 적절한 냉각장치로 구성된다. 시운전 단계에서는 15K GM 냉동기와 활성탄이 부착된 냉각판을 사용하는 방식과 4K GM 냉동기로 냉각하는 방식이, 최종 운전단계에서는 3.7K 액체 헬륨을 사용하는 방식이 고려되고 있다. 크라이오 펌프의 구조설계에 앞서 우선 배기속도, 흡?량, 작동압력, 냉각판 온도, 열손실량 등 설계사양을 확정하고 정리하는 일이 진행되고 있다. 또 냉각방식과 상관없이 동일한 개념으로 만들어지는 배플과 열차폐의 최적설계를 위한 몬테카를로 계산과 열전도 계산을 병행하고 있다. 이 곳에서는 KSTAR NBI 장치의 주배기계로서 사용될 크라이오 펌프의 설계방향과 전반적인 구조 및 예상성능 등에 대해 발표하려고 한다.

  • PDF

Measurement of fast ion life time using neutron diagnostics and its application to the fast ion instability at ELM suppressed KSTAR plasma by RMP

  • Kwak, Jong-Gu;Woo, M.H.;Rhee, T.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1860-1865
    • /
    • 2019
  • The confinement degradation of the energetic particles during RMP would be a key issue in success of realizing the successful energy production using fusion plasma, because a 3.5 MeV energetic alpha particle should be able to sustain the burning plasma after the ignition. As KSTAR recent results indicate the generation of high-performance plasma(${\beta}_p{\sim}3$), the confinement of the energetic particles is also an important key aspect in neutral beam driven plasma. In general, the measured absolute value of the neutron intensity is generally used for to estimating the confinement time of energetic particles by comparing it with the theoretical value based on transport calculations. However, the availability of, but for its calculation process, many accurate diagnostic data of plasma parameters such as thermal and incident fast ion density, are essential to the calculation process. In this paper, the time evolution of the neutron signal from an He3 counter during the beam blank has permitted to facilitate the estimation of the slowing down time of energetic particles and the method is applied to investigate the fast ion effect on ELM suppressed KSTAR plasma which is heated by high energy deuterium neutral beams.

Simulation on the gas fueling for the base operation of the KSTAR tokamak (KSTAR 토카막 기본운전을 위한 연료주입 모의실험)

  • In, S.R.;Kim, T.S.;Jeong, S.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.489-495
    • /
    • 2007
  • The assembly of the main system of the KSTAR tokamak has been recently completed, and the preparation for the 1st plasma and test operations is progressed. The fueling system established for these purposes uses only one port placed at the opposite side of the pumping duct, and has a difficulty of attaining a uniform and fast supply of fuel particles to the plasma. At the base operation stage after finishing the test operation, the fueling system must be improved to provide a uniform fueling and a feed-back control in accordance with a high-density tokamak plasma maintained for a long period. As a part for understanding the points to be improved in the fueling system, a Monte Carlo simulation on the gas fueling into the tokamak plasma has been executed. After modeling the vacuum vessel and the plasma of quasi-D shapes as tori of rectangular cross-sections, the influences of the position and the number of the fueling inputs on the particle density distribution for a given pumping probability and mean free path were investigated.

Vacuum Characteristics of KSTAR ICRF Antenna during RF Operation (고주파 인가시의 KSTAR ICRF 안테나의 진공특성)

  • Bae, Young-Dug;Kwak, Jong-Gu;Hong, Bong-Geon
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.3
    • /
    • pp.314-324
    • /
    • 2006
  • The vacuum characteristics of the KSTAR ICRF antenna were experimentally investigated. The fabricated antenna was installed in the RF Test Chamber(RFTC) which has a vacuum system with an effective pumping speed of 1015 l/s. The time variations of RFTC pressure, total gas load and ultimate pressure were measured before the RF test. RF conditioning effect was studied by repeating RF pulses at low power level. A time variation of the RFTC pressure was measured during a RF power was applied to the antenna. Threshold pressure at which a RF breakdown occurs was investigated. Whenever the pressure was higher than $10^{-4}$ mbar, the RF breakdown occurred. During a long pulse testing, the temperature of the antenna and RFTC pressure were measured to investigate long pulse limitation of the maximum available voltage without any cooling, which were compared with testing results with a water cooling of the antenna.

The KSTAR Vacuum Pumping and Fueling System Upgrade

  • Lim, J.Y.;Chung, K.H.;Cho, S.Y.;Lee, S.K.;Shin, Y.H.;Hong, S.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.39-39
    • /
    • 1999
  • The KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak is a nuclear fusion experimental device for a long pulse/steady-state plasma operation, adopting fully superconducting magnets. In accordance with completion of the basic design of the torus vacuum vessel and the enclosing cryostat, the vacuum pumping and gas fueling basic design has been developed to fulfil the physics requirements. The ultra-high vacuum pumping and sophisticated gas fueling system of the machine is essential to achieve such roles for optimized plasma performance and operation. Recently the vacuum exhaust system using dedicated pumping ports for the vacuum vessel and cryostat has been modified to meet more reliable and successful performance of the KSTAR[Fig. 1].In order to achieve the required base pressure of 5 x 10-9 torr, the total impurity load to the vessel internal is limited to ~5 x 10-5 torr-1/x, while the cryostat base pressure is kept as ~5 x 105 torr to mitigate the thermal load applied to the superconducting magnets. Each KSTAR fueling system will be separately capable of fueling gas at a rate of 50 torr-1/x, consistent with the given pumping throughput. In order to initiate a plasma discharge in KSTAR, the vacuum vessel is filled to a gas pressure of few 10-6 to few 10-4 torr, and additional gas injection is required to maintain and increase the plasma density during the course of the discharge period.

  • PDF

Implementation of EPICS based control system for KSTAR Current Lead System (KSTAR 전류전송제어시스템의 원격운전을 위한 EPICS 기반 제어계 구축)

  • Kim, Myung-Kyu;Baek, S.H.;Kim, K.H.;Park, M.K.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.58-66
    • /
    • 2008
  • The KSTAR Current Lead System(CLS) with network based real-time distributed control system is implemented using an EPICS as a middle-ware software. The current lead system transfers current from magnet power supplies to superconducting magnet system and simultaneously supply the coolant to maintain superconducting state. To control the CLS at main control room an EPICS IOC server is installed in local control area. Using this server, it is able to be controlled and monitored the system in main control room through operator interface(OPI) which uses "caget" to read status and "caput" to write command with a unique name called PV. The EPICS IOC is developed using "ether-ip" driver to communicate with PLC. Also we achieved satisfactory results in operation and stability aspects from a long period commissioning test.