• Title/Summary/Keyword: KOMPSAT-3A

Search Result 373, Processing Time 0.025 seconds

Research Trends in KOMPSAT Series (다목적실용위성 시리즈 연구 동향)

  • Lee, Kwang-Jae;Oh, Kwan-Young;Chae, Tae-Byeong;Lee, Won-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_4
    • /
    • pp.1313-1318
    • /
    • 2019
  • The Korea Aerospace Research Institute (KARI) has developed and operated a total of three KOMPSAT series(K-3, 3A and 5). The main purpose of satellite development is to utilize data obtained from satellites. In other words, continuous efforts should be made to improve the accuracy of data processing and expand the application areas. This special issue introduces pre-processing and application technologies based on optic and Synthetic Aperture Radar (SAR) sensors of KOMPSAT series. It is believed that more systematic research and development will be needed as follow-up KOMPSAT series and small satellites are under development.

Building Detection Using Shadow Information in KOMPSAT Satellite Imagery (그림자 정보를 이용한 KOMPSAT 위성영상에서의 건물 검출)

  • 예철수;이쾌희
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.3
    • /
    • pp.235-242
    • /
    • 2000
  • This paper presents a method to detect buildings using shadow information in satellite imagery. We classify image into three categories of building region, shadow region and background region to find buildings with consistent intensity. After the removal of noises in building regions and shadow regions, buildings adjacent to shadow regions are detected using the constraint of building and shadow sizes. The algorithm has been applied to KOMPSAT and SPOT images and the result showed buildings are efficiently detected.

GENERATION OF GEO-SPATIAL INFORMATION USING KOMPSAT-2 IMAGERY

  • Lee, Hyun-Jik;Ru, Ji-Ho;Yu, Young-Geol;Lee, Kyu-Man
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.14-17
    • /
    • 2008
  • KOMPSAT-2 is the seventh high-resolution satellite in the world that provides both 1m panchromatic images and 4m multispectral images of the GSD. It is expected to be used across many different fields including digital mapping, territorial and environmental monitoring. However, due to the complexity and security concern involved with the use of the MSC, the use of KOMPSAT-2 images are limited in terms of geometric data, such as satellite orbits and detailed mapping information. This study aims to generate the DEM and orthoimage by using the stereo images of KOMPSAT-2 and to explore the applicability of geo-spatial information with KOMPSAT-2. In order to ensure generation of DEMs of optimal accuracy, the RPCs data and a suitable number of GCPs were used. The accuracy of DEM generated in this research compared with DEM generated from 1:5,000 digital map. The mean differences between horizontal position of the orthoimage and the digital map data are found to be ${\pm}$3.1m, which is in the range of ${\pm}$3.5m, within the permitted limit of a 1:5,000 digital map. The results suggest that DEM can be adequately used to produce digital maps under 1:5,000 scale.

  • PDF

A Study on the Seamline Estimation for Mosaicking of KOMPSAT-3 Images (KOMPSAT-3 영상 모자이킹을 위한 경계선 추정 방법에 대한 연구)

  • Kim, Hyun-ho;Jung, Jaehun;Lee, Donghan;Seo, Doochun
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1537-1549
    • /
    • 2020
  • The ground sample distance of KOMPSAT-3 is 0.7 m for panchromatic band, 2.8 m for multi-spectral band, and the swath width of KOMPSAT-3 is 16 km. Therefore, an image of an area wider than the swath width (16 km) cannot be acquired with a single scanning. Thus, after scanning multiple areas in units of swath width, the acquired images should be made into one image. At this time, the necessary algorithm is called image mosaicking or image stitching, and is used for cartography. Mosaic algorithm generally consists of the following 4 steps: (1) Feature extraction and matching, (2) Radiometric balancing, (3) Seamline estimation, and (4) Image blending. In this paper, we have studied an effective seamline estimation method for satellite images. As a result, we can estimate the seamline more accurately than the existing method, and the heterogeneity of the mosaiced images was minimized.

Comparison of High Resolution Image by Ortho Rectification Accuracy and Correlation Each Band (고해상도 영상의 정사보정 정확도 검증 및 밴드별 상관성 비교연구)

  • Jin, Cheong-Gil;Park, So-Young;Kim, Hyung-Seok;Chun, Yong-Sik;Choi, Chul-Uong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.35-45
    • /
    • 2010
  • The objective of this study is to verify the positional accuracy by performing the orthometric corrections on the high resolution satellite images and to analyze the band correlation between the high resolution images corrected with orthometric correction. The objectives also included an analysis on the correlation of NDVI. For the orthometric correction of images from KOMPSAT2 and IKONOS, systematic errors were removed in use of RPC data, and non-planar distortions were corrected with GPS surveying data. Also, by preempting the image points at the same positions within ortho images, a comparison was performed on positional accuracies between image points of each image and GPS surveying points. The comparison was also made on the positional accuracies of image points. between the images. For correlation of band and correlation of NDVI, the descriptive statistics of DN values were acquired for respective bands by adding the Quickbird images and Aerial Photographs undergone through orthometric correction at the time of purchase. As result, from a comparison on positional accuracies of Orthoimages from KOMPSAT2 and Ortho Images of IKONOS was made. From the comparison the distance between the image points within each image and GPS surveying points was identified as 3.41m for KOMPSAT2 and as 1.45m for IKONOS, presenting a difference of 1.96m. Whereas, RMSE between image points was identified as 1.88m. The level of correlation was measured by using Quickbird, KOMPSAT2, IKONOS and Aerial Photographs between inter-image bands and NDVI, showing that there were high levels of correlation between Quickbird and IKONOS identified from all bands as well as from NDVI, except a high level of correlation that was identified between the Aerial Photographs and KOMPSAT2 from Band 2. Low levels of correlation were also identified between Quickbird and Aerial Photographs from Band 1. and between KOMPSAT2 and IKONOS from Band 2 and Band 4, whereas, KOMPSAT2 showed low correlations with Aerial Photographs from Band 3. For NDVI, KOMPSAT2 showed low level of correlations with both of QuickBird and IKONOS.

Image Registration for Cloudy KOMPSAT-2 Imagery Using Disparity Clustering

  • Kim, Tae-Young;Choi, Myung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.287-294
    • /
    • 2009
  • KOMPSAT-2 like other high-resolution satellites has the time and angle difference in the acquisition of the panchromatic (PAN) and multispectral (MS) images because the imaging systems have the offset of the charge coupled device combination in the focal plane. Due to the differences, high altitude and moving objects, such as clouds, have a different position between the PAN and MS images. Therefore, a mis-registration between the PAN and MS images occurs when a registration algorithm extracted matching points from these cloud objects. To overcome this problem, we proposed a new registration method. The main idea is to discard the matching points extracted from cloud boundaries by using an automatic thresholding technique and a classification technique on a distance disparity map of the matching points. The experimental result demonstrates the accuracy of the proposed method at ground region around cloud objects is higher than a general method which does not consider cloud objects. To evaluate the proposed method, we use KOMPSAT-2 cloudy images.

Change of NDVI by Surface Reflectance Based on KOMPSAT-3/3A Images at a Zone Around the Fukushima Daiichi Nuclear Power Plant (후쿠시마 제1 원전 주변 지역의 KOMPSAT-3/3A 영상 기반 지표반사도 적용 식생지수 변화)

  • Lee, Jihyun;Lee, Juseon;Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.2027-2034
    • /
    • 2021
  • Using multi-temporal KOMPSAT-3/3A high-resolution satellite images, the Normalized Difference Vegetation Index (NDVI) for the area around the Fukushima daiichi nuclear power plant was determined, and the pattern of vegetation changes was analyzed. To calculate the NDVI, surface reflectance from the KOMPSAT-3/3A satellite image was used. Satellite images from four years were used, and the zones where the images overlap was designated as the area of interest (AOI) for the study, and by setting a profile passing through highly vegetated area as a data analysis method, the changes by year were examined. In addition, random points were extracted within the AOI and displayed as a box plot to quantitatively indicate change of NDVI distribution pattern. The main results of this study showed that the NDVI in 2014 was low within AOI in the vicinity of the nuclear power plant, but vegetated area continued to expand until 2021. These results were also confirmed in the change monitoring results shown in a profile or box plot. In disaster areas where access is restricted, such as the Fukushima nuclear power plant area, where it is difficult to collect field data, obtaining land cover classification products with high accuracy using satellite images is challenging, so it is appropriate to analyze them using primary outputs such as vegetation indices obtained from high-resolution satellite imagery. It is necessary to establish an international cooperation system for jointly utilizing satellite images. Meanwhile, to periodically monitor environmental changes in neighboring countries that may affect the Korean peninsula, it is necessary to establish utilization models and systems using high-resolution satellite images.

Application of Hydroacoustic System and Kompsat-2 Image to Estimate Distribution of Seagrass Beds (수중음향과 Kompsat-2 위성영상을 이용한 해초지 분포 추정)

  • Kim, Keunyong;Eom, Jinah;Choi, Jong-Kuk;Ryu, Joo-Hyung;Kim, Kwang Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.3
    • /
    • pp.181-188
    • /
    • 2012
  • Despite the ecological importance of seagrass beds, their distributional information in Korean coastal waters is insufficient. Therefore, we used hydroacoustic system to collect accurate bathymetry and classification of seagrass, and Kompsat-2 (4 m spatial resolution) image for detection of seagrass beds at Deukryang Bay, Korea. The accuracy of Kompsat-2 image classification was evaluated using hydracoustic survey result using error matrix and Kappa value. The total area of seagrass beds from satellite image classification was underestimated compared to the hydroacoustic survey, estimated 3.9 and $4.5km^2$ from satellite image and hydroacoustic data, respectively. Nonetheless, the accuracy of Kompsat-2 image classification over hydroacoustic-based method showing 90% (Kappa=0.85) for the three class maps (seagrass, unvegetated seawater and aquaculture). The agreement between the satellite image classification and the hydroacoustic result was 77.1% (the seagrass presence/absence map). From our result of satellite image classification, Kompsat-2 image is suitable for mapping seagrass beds with high accuracy and non-destructive method. For more accurate information, more researches with a variety of high-resolution satellite image will be preceded.

Performance of Support Vector Machine for Classifying Land Cover in Optical Satellite Images: A Case Study in Delaware River Port Area

  • Ramayanti, Suci;Kim, Bong Chan;Park, Sungjae;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1911-1923
    • /
    • 2022
  • The availability of high-resolution satellite images provides precise information without direct observation of the research target. Korea Multi-Purpose Satellite (KOMPSAT), also known as the Arirang satellite, has been developed and utilized for earth observation. The machine learning model was continuously proven as a good classifier in classifying remotely sensed images. This study aimed to compare the performance of the support vector machine (SVM) model in classifying the land cover of the Delaware River port area on high and medium-resolution images. Three optical images, which are KOMPSAT-2, KOMPSAT-3A, and Sentinel-2B, were classified into six land cover classes, including water, road, vegetation, building, vacant, and shadow. The KOMPSAT images are provided by Korea Aerospace Research Institute (KARI), and the Sentinel-2B image was provided by the European Space Agency (ESA). The training samples were manually digitized for each land cover class and considered the reference image. The predicted images were compared to the actual data to obtain the accuracy assessment using a confusion matrix analysis. In addition, the time-consuming training and classifying were recorded to evaluate the model performance. The results showed that the KOMPSAT-3A image has the highest overall accuracy and followed by KOMPSAT-2 and Sentinel-2B results. On the contrary, the model took a long time to classify the higher-resolution image compared to the lower resolution. For that reason, we can conclude that the SVM model performed better in the higher resolution image with the consequence of the longer time-consuming training and classifying data. Thus, this finding might provide consideration for related researchers when selecting satellite imagery for effective and accurate image classification.

A Conceptual Design of Integrated Receiving end for Multi-Satellite Mission Data Processing (다중위성 운영을 위한 통합 자료처리 시스템의 개념적 설계)

  • Bae, Hee-Jin;Chae, Tae-Byeong;Oh, Seung-Hyeub
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.2
    • /
    • pp.17-22
    • /
    • 2010
  • Establishment of systematic platform is needed for technological progress of receiving of satellite image data with high quality and processing system for product generation and operation related with direct receiving system for satellite from abroad. Besides, it's necessary to develop the integrated data processing system to prohibit similar functions on developing (or being developed) for KOMPSAT-3, KOMPSAT-5 and to operate system efficiently. Therefore, conceptual design of the integrated data processing system is performed considering commercialization of KOMPSAT(Korea Multi-Purpose Satellite) series based on KOMPSAT-2 IRPE on operation in this paper.