• Title/Summary/Keyword: KOMPSAT-2/3

Search Result 288, Processing Time 0.026 seconds

RPC Correction of KOMPSAT-3A Satellite Image through Automatic Matching Point Extraction Using Unmanned AerialVehicle Imagery (무인항공기 영상 활용 자동 정합점 추출을 통한 KOMPSAT-3A 위성영상의 RPC 보정)

  • Park, Jueon;Kim, Taeheon;Lee, Changhui;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1135-1147
    • /
    • 2021
  • In order to geometrically correct high-resolution satellite imagery, the sensor modeling process that restores the geometric relationship between the satellite sensor and the ground surface at the image acquisition time is required. In general, high-resolution satellites provide RPC (Rational Polynomial Coefficient) information, but the vendor-provided RPC includes geometric distortion caused by the position and orientation of the satellite sensor. GCP (Ground Control Point) is generally used to correct the RPC errors. The representative method of acquiring GCP is field survey to obtain accurate ground coordinates. However, it is difficult to find the GCP in the satellite image due to the quality of the image, land cover change, relief displacement, etc. By using image maps acquired from various sensors as reference data, it is possible to automate the collection of GCP through the image matching algorithm. In this study, the RPC of KOMPSAT-3A satellite image was corrected through the extracted matching point using the UAV (Unmanned Aerial Vehichle) imagery. We propose a pre-porocessing method for the extraction of matching points between the UAV imagery and KOMPSAT-3A satellite image. To this end, the characteristics of matching points extracted by independently applying the SURF (Speeded-Up Robust Features) and the phase correlation, which are representative feature-based matching method and area-based matching method, respectively, were compared. The RPC adjustment parameters were calculated using the matching points extracted through each algorithm. In order to verify the performance and usability of the proposed method, it was compared with the GCP-based RPC correction result. The GCP-based method showed an improvement of correction accuracy by 2.14 pixels for the sample and 5.43 pixelsfor the line compared to the vendor-provided RPC. In the proposed method using SURF and phase correlation methods, the accuracy of sample was improved by 0.83 pixels and 1.49 pixels, and that of line wasimproved by 4.81 pixels and 5.19 pixels, respectively, compared to the vendor-provided RPC. Through the experimental results, the proposed method using the UAV imagery presented the possibility as an alternative to the GCP-based method for the RPC correction.

Development of a Satellite Image Preprocessing System for Obtaining 3-D Positional Information -Focused on KOMPSAT and SPOT Imagery- (3차원 위치정보를 취득하기 위한 위성영상처리 시스템 개발 - KOMPSAT 및 SPOT영상을 중심으로 -)

  • 유환희;김동규;진경혁;우해인
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.3
    • /
    • pp.291-300
    • /
    • 2001
  • In this paper, we developed a Satellite Image Processing System for obtaining 3-D positional information which is composed of five process modules. As a procedure of them, the Data Process module is the procedure that reads and processes the header file to generate data files. and then calculates orbital parameters and sensor attitudes for obtaining of 3-D positional information with them. The 3D Process module is to calculate 3-D positional information and the Dialog Process module is to correct the time of image frame center using the single image or stereo images for implementing the 3D Process module. We expect to obtain 3-D positional information with the header file and minimum GCPs(1∼2 points) using this system efficiently and economically in comparison with existing commercial software packages.

  • PDF

Iterative Precision Geometric Correction for High-Resolution Satellite Images (고해상도 위성영상의 반복 정밀 기하보정)

  • Son, Jong-Hwan;Yoon, Wansang;Kim, Taejung;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.431-447
    • /
    • 2021
  • Recently, the use of high-resolution satellites is increasing in many areas. In order to supply useful satellite images stably, it is necessary to establish automatic precision geometric correction technic. Geometric correction is the process that corrected geometric errors of satellite imagery based on the GCP (Ground Control Point), which is correspondence point between accurate ground coordinates and image coordinates. Therefore, in the automatic geometric correction process, it is the key to acquire high-quality GCPs automatically. In this paper, we proposed iterative precision geometry correction method. we constructed an image pyramid and repeatedly performed GCP chip matching, outlier detection, and precision sensor modeling in each layer of the image pyramid. Through this method, we were able to acquire high-quality GCPs automatically. we then improved the performance of geometric correction of high-resolution satellite images. To analyze the performance of the proposed method, we used KOMPSAT-3 and 3A Level 1R 8 scenes. As a result of the experiment, the proposed method showed the geometric correction accuracy of 1.5 pixels on average and a maximum of 2 pixels.

INITIAL ACQUISITION PROCEDURE FOR KOMPSAT2 WITH K13ANTENNA

  • Lee Jeong-bae;Yang Hyung-mo;Ahn Sang-il;Kim Eun-kyou
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.501-504
    • /
    • 2005
  • In general, most incomplete communication link setup between satellite and ground station right after separation from launcher come from less accurate orbital vector ground station uses to track the satellite because only predicted orbital state vector is available during first few orbits. This paper describes the developed procedure for successful initial acquisition for KOMPSAT-2 using scanning functions ofK13 antenna system with predicted orbital information. Azimuth scan, raster scan, spiral scan functions were tested with KOMPSA Tl under intentionally degraded orbital information for antenna operation. Through tests, spiral scan function was decided to be best search scan among 3 scans. Developed procedure can assure the successful acquisition only if azimuth offset and time offset value are within +/-2deg and +/-30sec, respectively.

  • PDF

Analysis of KOMPSAT-5 Orbit for Radargrammetry (레이더 측량기법 적용을 위한 다목적실용위성 5호 궤도 분석)

  • Lee, Hoon-Yol;Jang, So-Young
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.351-358
    • /
    • 2008
  • KOMPSAT-5 will be launched in 2010 carrying a SAR (Synthetic Aperture Radar) system to obtain high resolution images of the earth surface regardless of weather or solar condition. In this paper, the orbits of KOMPSAT-5 and the imaging modes of SAR were analyzed for radargrammetry, and the best image pairs were suggested. We set the pass number from the nearest orbit to a given ground point and selected image pairs for radargrarnmetry, with height sensitivity of parallax higher than 0.5 to achieve enough height resolution and with the value lower than 0.8 to avoid errors from geometric distortion. On the equator, for example, where the distance between two adjacent passes is fixed to 95 km, we solved the orbit geometry and found that the image pairs with the pass numbers of 3-2 and 5-3 are suitable for radargrarnmetry. As the examples with arbitrary latitude, we selected Daejeon and Sejong Antarctic stations and calculated the orbital elements by using STK software. Three image pairs (5-4, 7-5 and 8-5) were found suitable for radargrammetry at Daejeon while 10 pairs (8-6, 9-7, 10-7, 11-8, 12-8, 13-9, 14-9, 15-9, 15-10 and 15-11) at Sejong Antarctic station.

Feasibility Analysis of Precise Sensor Modelling for KOMPSAT-3A Imagery Using Unified Control Points (통합기준점을 이용한 KOMPSAT-3A 영상의 정밀센서모델링 가능성 분석)

  • Yoon, Wansang;Park, HyeongJun;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1089-1100
    • /
    • 2018
  • In this paper, we analyze the feasibility of establishing a precise sensor model for high-resolution satellite imagery using unified control points. For this purpose, we integrated unified control points and the aerial orthoimages from the national land information map (http://map.ngii.go.kr/ms/map/NlipMap.do) operated by the National Geographic Information Institute (NGII). Then, we collected the image coordinates corresponding to the unified control point's location in the satellite image. The unified control points were used as observation data for establishing a precise sensor model. For the experiment, we compared the results of precise sensor modeling using GNSS survey data and those using unified control points. Our experimental results showed that it is possible to establish a precise sensor model with around 2 m accuracy when using unified control points.

Feature Matching using Variable Circular Template for Multi-resolution Image Registration (다중 해상도 영상 등록을 위한 가변 원형 템플릿을 이용한 특징 정합)

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1351-1367
    • /
    • 2018
  • Image registration is an essential process for image fusion, change detection and time series analysis using multi-sensor images. For this purpose, we need to detect accurately the difference of scale and rotation between the multi-sensor images with difference spatial resolution. In this paper, we propose a new feature matching method using variable circular template for image registration between multi-resolution images. The proposed method creates a circular template at the center of a feature point in a coarse scale image and also a variable circular template in a fine scale image, respectively. After changing the scale of the variable circular template, we rotate the variable circular template by each predefined angle and compute the mutual information between the two circular templates and then find the scale, the angle of rotation and the center location of the variable circular template, respectively, in fine scale image when the mutual information between the two circular templates is maximum. The proposed method was tested using Kompsat-2, Kompsat-3 and Kompsat-3A images with different spatial resolution. The experimental results showed that the error of scale factor, the error of rotation angle and the localization error of the control point were less than 0.004, $0.3^{\circ}$ and one pixel, respectively.

Detection of Settlement Areas from Object-Oriented Classification using Speckle Divergence of High-Resolution SAR Image (고해상도 SAR 위성영상의 스페클 divergence와 객체기반 영상분류를 이용한 주거지역 추출)

  • Song, Yeong Sun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.79-90
    • /
    • 2017
  • Urban environment represent one of the most dynamic regions on earth. As in other countries, forests, green areas, agricultural lands are rapidly changing into residential or industrial areas in South Korea. Monitoring such rapid changes in land use requires rapid data acquisition, and satellite imagery can be an effective method to this demand. In general, SAR(Synthetic Aperture Radar) satellites acquire images with an active system, so the brightness of the image is determined by the surface roughness. Therefore, the water areas appears dark due to low reflection intensity, In the residential area where the artificial structures are distributed, the brightness value is higher than other areas due to the strong reflection intensity. If we use these characteristics of SAR images, settlement areas can be extracted efficiently. In this study, extraction of settlement areas was performed using TerraSAR-X of German high-resolution X-band SAR satellite and KOMPSAT-5 of South Korea, and object-oriented image classification method using the image segmentation technique is applied for extraction. In addition, to improve the accuracy of image segmentation, the speckle divergence was first calculated to adjust the reflection intensity of settlement areas. In order to evaluate the accuracy of the two satellite images, settlement areas are classified by applying a pixel-based K-means image classification method. As a result, in the case of TerraSAR-X, the accuracy of the object-oriented image classification technique was 88.5%, that of the pixel-based image classification was 75.9%, and that of KOMPSAT-5 was 87.3% and 74.4%, respectively.

Spatial Pattern Analysis of High Resolution Satellite Imagery: Level Index Approach using Variogram

  • Yoo, Hee-Young;Lee, Ki-Won;Kwon, Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.357-366
    • /
    • 2006
  • A traditional image analysis or classification method using satellite imagery is mostly based on the spectral information. However, the spatial information is more important according as the resolution is higher and spatial patterns are more complex. In this study, we attempted to compare and analyze the variogram properties of actual high resolution imageries mainly in the urban area. Through the several experiments, we have understood that the variogram is various according to a sensor type, spatial resolution, a location, a feature type, time, season and so on and shows the information related to a feature size. With simple modeling, we confirmed that the unique variogram types were shown unlike the classical variogram in case of small subsets. Based on the grasped variogram characteristics, we made a level index map for determining urban complexity or land-use classification. These results will become more and more important and be widely applied to the various fields of high-resolution imagery such as KOMPSAT-2 and KOMPSAT-3 which is scheduled to be launched.

A Study on Object Based Image Analysis Methods for Land Use and Land Cover Classification in Agricultural Areas (변화지역 탐지를 위한 시계열 KOMPSAT-2 다중분광 영상의 MAD 기반 상대복사 보정에 관한 연구)

  • Yeon, Jong-Min;Kim, Hyun-Ok;Yoon, Bo-Yeol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.66-80
    • /
    • 2012
  • It is necessary to normalize spectral image values derived from multi-temporal satellite data to a common scale in order to apply remote sensing methods for change detection, disaster mapping, crop monitoring and etc. There are two main approaches: absolute radiometric normalization and relative radiometric normalization. This study focuses on the multi-temporal satellite image processing by the use of relative radiometric normalization. Three scenes of KOMPSAT-2 imagery were processed using the Multivariate Alteration Detection(MAD) method, which has a particular advantage of selecting PIFs(Pseudo Invariant Features) automatically by canonical correlation analysis. The scenes were then applied to detect disaster areas over Sendai, Japan, which was hit by a tsunami on 11 March 2011. The case study showed that the automatic extraction of changed areas after the tsunami using relatively normalized satellite data via the MAD method was done within a high accuracy level. In addition, the relative normalization of multi-temporal satellite imagery produced better results to rapidly map disaster-affected areas with an increased confidence level.