• Title/Summary/Keyword: KOMPSAT-1 영상

Search Result 244, Processing Time 0.028 seconds

Consideration Points for application of KOMPSAT Data to Open Data Cube (다목적실용위성 자료의 오픈 데이터 큐브 적용을 위한 기본 고려사항)

  • LEE, Ki-Won;KIM, Kwang-Seob;LEE, Sun-Gu;KIM, Yong-Seung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.1
    • /
    • pp.62-77
    • /
    • 2019
  • Open Data Cube(ODC) has been emerging and developing as the open source platform in the Committee on Earth Observation Satellites(CEOS) for the Global Earth Observation System of Systems(GEOSS) deployed by the Group on Earth Observations (GEO), ODC can be applied to the deployment of scalable and large amounts of free and open satellite images in a cloud computing environment, and ODC-based country or regional application services have been provided for public users on the high performance. This study first summarizes the status of ODC, and then presents concepts and some considering points for linking this platform with Korea Multi-Purpose Satellite (KOMPSAT) images. For the reference, the main contents of ODC with the Google Earth Engine(GEE) were compared. Application procedures of KOMPSAT satellite image to implement ODC service were explained, and an intermediate process related to data ingestion using actual data was demonstrated. As well, it suggested some practical schemes to utilize KOMPSAT satellite images for the ODC application service from the perspective of open data licensing. Policy and technical products for KOMPSAT images to ODC are expected to provide important references for GEOSS in GEO to apply new satellite images of other countries and organizations in the future.

Analysis of Satellite Images to Estimate Forest Biomass (산림 바이오매스를 산정하기 위한 위성영상의 분석)

  • Lee, Hyun Jik;Ru, Ji Ho;Yu, Young Geol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.3
    • /
    • pp.63-71
    • /
    • 2013
  • This study calculated vegetation indexes such as SR, NDVI, SAVI, and LAI to figure out correlations regarding vegetation by using high resolution KOMPSAT-2 images and LANDSAT images based on the forest biomass distribution map that utilized field survey data, satellite images and LiDAR data and then analyzed correlations between their values and forest biomass. The analysis results reveal that the vegetation indexes of high resolution KOMPSAT-2 images had higher correlations than those of LANDSAT images and that NDVI recorded high correlations among the vegetation indexes. In addition, the study analyzed the characteristics of hyperspectral images by using the COMIS of STSAT-3 and Hyperion images of a similar sensor, EO-1, and further the usability of biomass estimation in hyperspectral images by comparing vegetation index, which had relatively high correlations with biomass, with the vegetation indexes of LANDSAT with the same GSD conditions.

A Method of DTM Generation from KOMPSAT-3A Stereo Images using Low-resolution Terrain Data (저해상도 지형 자료를 활용한 KOMPSAT-3A 스테레오 영상 기반의 DTM 생성 방법)

  • Ahn, Heeran;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.715-726
    • /
    • 2019
  • With the increasing prevalence of high-resolution satellite images, the need for technology to generate accurate 3D information from the satellite images is emphasized. In order to create a digital terrain model (DTM) that is widely used in applications such as change detection and object extraction, it is necessary to extract trees, buildings, etc. that exist in the digital surface model (DSM) and estimate the height of the ground. This paper presents a method for automatically generating DTM from DSM extracted from KOMPSAT-3A stereo images. The technique was developed to detect the non-ground area and estimate the height value of the ground by using the previously constructed low-resolution topographic data. The average vertical accuracy of DTMs generated in the four experimental sites with various topographical characteristics, such as mountainous terrain, densely built area, flat topography, and complex terrain was about 5.8 meters. The proposed technique would be useful to produce high-quality DTMs that represent precise features of the bare-earth's surface.

KOMPSAT Image Processing and Analysis (다목적실용위성 영상처리 및 분석)

  • Kwang-Jae Lee;Kwan-Young Oh;Sung-Ho Chae;Sun-Gu Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1671-1678
    • /
    • 2023
  • The Korea multi-purpose satellite (KOMPSAT) series consisting of multi-sensors has been used in various fields such as land, environmental monitoring, and disaster analysis since its first launch in 1999. Recently, as various information processing technologies (high-speed computing technology, computer vision, artificial intelligence, etc.) that are rapidly developing are utilized in the field of remote sensing, it has become possible to develop more various satellite image processing and analysis algorithms. In this special issue, we would like to introduce recently researched technologies related to the KOMPSAT image application and research topics participated in the 2023 Satellite Information Application Contest.

Epipolar Image Resampling from Kompsat-3 In-track Stereo Images (아리랑3호 스테레오 영상의 에피폴라 기하 분석 및 영상 리샘플링)

  • Oh, Jae Hong;Seo, Doo Chun;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.455-461
    • /
    • 2013
  • Kompsat-3 is an optical high-resolution earth observation satellite launched in May 2012. The AEISS sensor of the Korean satellite provides 0.7m panchromatic and 2.8m multi-spectral images with 16.8km swath width from the sun-synchronous near-circular orbit of 685km altitude. Kompsat-3 is more advanced than Kompsat-2 and the improvements include better agility such as in-track stereo acquisition capability. This study investigated the characteristic of the epipolar curves of in-track Kompsat-3 stereo images. To this end we used the RPCs(Rational Polynomial Coefficients) to derive the epipolar curves over the entire image area and found out that the third order polynomial equation is required to model the curves. In addition, we could observe two different groups of curve patterns due to the dual CCDs of AEISS sensor. From the experiment we concluded that the third order polynomial-based RPCs update is required to minimize the sample direction image distortion. Finally we carried out the experiment on the epipolar resampling and the result showed the third order polynomial image transformation produced less than 0.7 pixels level of y-parallax.

KOMPSAT-1 EOC 표준영상 처리

  • Jun, Jung-Nam;Kim, Youn-Soo
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.197-204
    • /
    • 2003
  • General image processing is the production of images of added value with the use of the original and standard images. Generated data and auxiliary data are backed up and this retrieved data is periodically updated to provide images to outside users. To product general images, makes use of EOC Processing System Software. And then added value images is made from the standard images. Standard and added images are possible with internet for search and promptly provides for user. The process of the standard image derived from the original image(received from the satellite) is systematically arranged in this thesis, which also contains a concise explanation of the EOC processing system.

  • PDF

The Analysis of 2001 Land Use Distribution of Daejeon Metropolitan City based on KOMPSAT-1 EOC Imagery (KOMPSAT-1 EOC 자료를 활용한 2001년도 대전시 토지이용 현황의 공간적 분포 분석)

  • Kim, Youn-Soo;Jeon, Gap-Ho;Lee, Kwang-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.3
    • /
    • pp.13-21
    • /
    • 2004
  • The dissemination of commercial satellite images. which have the high spatial resolution such as aerial photos, are the active trend in remote sensing community because of the recent development in satellite and sensor technology. Such high resolution satellite images provide a unique tool for the monitoring of ongoing urban land use change. Especially KOMPSAT-1, which was launched at December 1999 and successfully operated up to now, provides repeatedly panchromatic images over Korean peninsula, which has the spatial resolution of 6.6m. Based upon this KOMPSAT-1 EOC image data we can try to analyze and assess the temporal urban land use change, which could not be done because lack of such data. The aim of this paper is to analyze and assess the spatial land use characteristics of Daejeon Metropolitan City based on KOMPSAT-1 EOC data. The land use map of year 2001 is generated through the modification of the year 2000 land use map, which is published by National Geographic Information Institute, using visual interpretation of KOMPSAT-1 EOC image which is acquired in year 2001. This study can be the start point of the time series analysis of the long term land use change monitoring mit KOMPSAT-1 EOC data.

  • PDF

Improvement of Satellite Image Value-Added Processing System and Performance Evaluation (위성영상 부가처리시스템(VAPS) 개선 및 성능평가)

  • Lee, Kwangjae;Kim, Eunseon;Moon, Jungye;Kim, Younsoo
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.174-183
    • /
    • 2014
  • The Value-Added Processing System(VAPS) was developed for post-processing the KOMPSAT imagery. Recently software version and hardware specification of VAPS were changed for improving the VAPS performance. The purpose of this study is to describe about the improvement of existing VAPS(ver.1.0) and systematically evaluate the performance of the improved VAPS(ver.2.0). To this end, test-bed areas in South and North Korea were selected and then image processing tests were conducted using KOMPSAT-2 and KOMPSAT-3 imagery in both areas. In conclusion, VAPS(ver.2.0) had an ability to generate the high level products like ortho images and mosaic images. Image processing time using the Graphic Processing Unit(GPU) on ver.2.0 was enhanced up to 10 times than ver.1.0.

Fine Co-registration Performance of KOMPSAT-3·3A Imagery According to Convergence Angles (수렴각에 따른 KOMPSAT-3·3A호 영상 간 정밀 상호좌표등록 결과 분석)

  • Han, Youkyung;Kim, Taeheon;Kim, Yeji;Lee, Jeongho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.491-498
    • /
    • 2019
  • This study analyzed how the accuracy of co-registration varies depending on the convergence angles between two KOMPSAT-3·3A images. Most very-high-resolution satellite images provide initial coordinate information through metadata. Since the search area for performing image co-registration can be reduced by using the initial coordinate information, in this study, the mutual information method showing high matching reliability in the small search area is used. Initial coarse co-registration was performed by using multi-spectral images with relatively low resolution, and precise fine co-registration was conducted centering on the region of interest of the panchromatic image for more accurate co-registration performance. The experiment was conducted by 120 combination of 16 KOMPSAT-3·3A 1G images taken in Daejeon area. Experimental results show that a correlation coefficient between the convergence angles and fine co-registration errors was 0.59. In particular, we have shown the larger the convergence angle, the lower the accuracy of co-registration performance.