The weighted K-nearest neighbor (WKNN) algorithm is used to reduce positioning accuracy, as it uses a fixed number of neighbors to estimate the position. In this paper, we propose a dynamic threshold location algorithm (DH-KNN) to improve positioning accuracy. The proposed algorithm is designed based on a dynamic threshold to determine the number of neighbors and filter out singular reference points (RPs). We compare its performance with the WKNN and Enhanced K-Nearest Neighbor (EKNN) algorithms in test spaces of networks with dimensions of $20m{\times}20m$, $30m{\times}30m$, $40m{\times}40m$ and $50m{\times}50m$. Simulation results show that the maximum position accuracy of DH-KNN improves by 31.1%, and its maximum position error decreases by 23.5%. The results demonstrate that our proposed method achieves better performance than other well-known algorithms.
The Transactions of The Korean Institute of Electrical Engineers
/
v.61
no.9
/
pp.1336-1339
/
2012
In this paper, we focus on solving the classification problem by using semisupervised learning strategy. Traditional classifiers are constructed based on labeled data in supervised learning. Labeled data, however, are often difficult, expensive or time consuming to obtain, as they require the efforts of experienced human annotators. Unlabeled data are significantly easier to obtain without human efforts. Thus, we use AdaBoost algorithm with SVM-KNN classifier to apply semisupervised learning problem and improve the classifier performance. Experimental results on both artificial and UCI data sets show that the proposed methodology can reduce the error rate.
International Journal of Advanced Culture Technology
/
v.12
no.3
/
pp.427-433
/
2024
This study aims to develop a personalized music digital therapeutic based on MBTI personality types and apply it to depression treatment. In the data collection stage, participants' MBTI personality types and music preferences were surveyed to build a database, which was then preprocessed as input data for the KNN model. The KNN model calculates the distance between personality types using Euclidean distance and recommends music suitable for the user's MBTI type based on the nearest K neighbors' data. The developed system was tested with new participants, and the system and algorithm were improved based on user feedback. In the final validation stage, the system's effectiveness in alleviating depression was evaluated. The results showed that the MBTI personality type-based music recommendation system provides a personalized music therapy experience, positively impacting emotional stability and stress reduction. This study suggests the potential of nonpharmacological treatments and demonstrates that a personalized treatment experience can offer more effective and safer methods for treating depression.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.18
no.1
/
pp.129-134
/
2018
Research on the technique for estimating the indoor position has been actively carried out. In particular, the WiFi fingerprint method, which does not require any additional infrastructure, is being partially used because of its high economic efficiency. The KNN method which estimates similar points to the corresponding points by comparing intensity information of the WLAN reception signal measured at various points in advance with intensity information measured at a specific point in the future is simple but has a good performance. However, in the conventional KNN scheme, since the number K of average candidate positions is constant, there is a problem that the position estimation error is not optimized according to a specific point. In this paper, we proposed an algorithm that adaptively changes the K value for each point and applied it to experimental data and evaluated its performance.
This paper studied the pattern recognition algorithm and feature parameters for speaker and context independent emotion recognition. In this paper, KNN algorithm was used as the pattern matching technique for comparison, and also VQ and GMM were used for speaker and context independent recognition. The speech parameters used as the feature are pitch. energy, MFCC and their first and second derivatives. Experimental results showed that emotion recognizer using MFCC and its derivatives showed better performance than that using the pitch and energy parameters. For pattern recognition algorithm. GMM-based emotion recognizer was superior to KNN and VQ-based recognizer.
This paper studied the pattern recognition algorithm and feature parameters for emotion recognition. In this paper, KNN algorithm was used as the pattern matching technique for comparison, and also VQ and GMM were used lot speaker and context independent recognition. The speech parameters used as the feature are pitch, energy, MFCC and their first and second derivatives. Experimental results showed that emotion recognizer using MFCC and their derivatives as a feature showed better performance than that using the Pitch and energy Parameters. For pattern recognition algorithm, GMM based emotion recognizer was superior to KNN and VQ based recognizer
Journal of the Institute of Electronics Engineers of Korea CI
/
v.42
no.4
s.304
/
pp.43-50
/
2005
This paper proposes a new pattern recognition system combining the new adaptive feature weighting based on the genetic algorithm and the modified KNN(K Nearest-Neighbor) rules. The new feature weighting proposed herein avoids the overfitting and finds the Proper feature weighting value by determining the middle value of weights using GA. New GA operators are introduced to obtain the high performance of the system. Moreover, a class dependent feature weighting strategy is employed. Whilst the classical methods use the same feature space for all classes, the Proposed method uses a different feature space for each class. The KNN rule is modified to estimate the class of test pattern using adaptive feature space. Experiments were performed with the unconstrained handwritten numeral database of Concordia University in Canada to show the performance of the proposed method.
Journal of the Korea Institute of Information and Communication Engineering
/
v.23
no.5
/
pp.495-507
/
2019
Data sparsity is one of the main challenges for the recommender system. The recommender system contains massive data in which only a small part is the observed data and the others are missing data. Most studies assume that missing data is randomly missing from the dataset. Therefore, they only use observed data to train recommendation model, then recommend items to users. In actual case, however, missing data do not lost randomly. In our research, treat these missing data as negative examples of users' interest. Three sample methods are seamlessly integrated into SVD++ algorithm and then propose SVD++_W, SVD++_R and SVD++_KNN algorithm. Experimental results show that proposed sample methods effectively improve the precision in Top-N recommendation over the baseline algorithms. Among the three improved algorithms, SVD++_KNN has the best performance, which shows that the KNN sample method is a more effective way to extract the negative examples of the users' interest.
This article proposes the modified KNN (K Nearest Neighbor) algorithm which considers the feature similarity and is applied to the word categorization. The texts which are given as features for encoding words into numerical vectors are semantic related entities, rather than independent ones, and the synergy effect between the word categorization and the text categorization is expected by combining both of them with each other. In this research, we define the similarity metric between two vectors, including the feature similarity, modify the KNN algorithm by replacing the exiting similarity metric by the proposed one, and apply it to the word categorization. The proposed KNN is empirically validated as the better approach in categorizing words in news articles and opinions. The significance of this research is to improve the classification performance by utilizing the feature similarities.
Proceedings of the Korea Information Processing Society Conference
/
2011.11a
/
pp.602-605
/
2011
현재 측위에 대한 측정 대상이 점점 작아지면서, 그에 따른 정확도 까지 높아지고 있다. 실내 측위에 관한 기술은 대표적으로 단말기의 수신신호의 세기방식인 RSS(Received Signal Strength), 수신신호의 도달시간 방식 TOA(Time of Arrival), 수신 신호의 도달 시간차 방식 TDOA(Time Difference of Arrival), 수신신호의 입사각 방식인 AOA(Angle of Arrival) 등 여러 가지 기술이 활발히 진행되고 있다. 본 논문은 특수 장비를 사용하지 않고, 무선 네트워크 기반의 실내 측위 중에 정확도가 높은 Fingerprinting 방법을 택하였다. WLAN 기반 실내측위에 가장 많이 사용되는 KNN은 k개의 이웃수와 RP의 수에 따라 민감하다. 본 논문에서는 KNN 성능을 향상 시키기 위해 SVM 이용하여 SNR 데이터를 군집화를 적용한 KNN과 SVM을 혼합한 알고리즘을 제안하였다. 제안한 알고리즘은 신호잡음비 데이터를 KNN 방법에 적용하여 k개의 RP를 선택한 후 선택된 RP의 신호잡음비를 SVM에 적용하여 k개의 RP를 군집하여 분류한다. 실험 결과 위치 오차가 2m이내에 KNN/SVM 혼합 알고리즘이 KNN 알고리즘보다 성능이 우수하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.