• Title/Summary/Keyword: KINETICS

Search Result 4,011, Processing Time 0.027 seconds

A Study on Reaction Kinetics of PTMG/TDI Prepolymer with MOCA by Non-Isothermal DSC

  • Ahn, WonSool;Eom, Seong-Ho
    • Elastomers and Composites
    • /
    • v.50 no.2
    • /
    • pp.92-97
    • /
    • 2015
  • A study on reaction kinetics for a PTMG/TDI prepolymer with 2,2'-dichloro-4,4'-methylenedianiline (MOCA), of which formulations may be generally used for fabricating high performance polyurethane elastomers, was peformed using non-isothermal differential scanning calorimetry (DSC). A number of thermograms were obtained at several constant heating rates, and analysed using Flynn-Wall-Ozawa (FWO) isoconversional method for activation energy, $E_a$ and extended-Avrami equation for reaction order, n. Urea formation reaction of the present system was observed to occur through the simple exothermic reaction process in the temperature range of $100{\sim}130^{\circ}C$ for the heating rate of $3{\sim}7^{\circ}C/min$. and could be well-fitted with generalized sigmoid function. Though activation energy was nearly constant as $53.0{\pm}0.5kJ/mol$, it tended to increase a little at initial stage, but it decreases at later stage by the transformation into diffusion-controlled reaction due to the increased viscosity. Reaction order was evaluated as about 2.8, which was somewhat higher than the generally well-known $2^{nd}$ order values for the various urea reactions. Both the reaction order and reaction rate explicitly increased with temperature, which was considered as the indication of occurring the side reactions such as allophanate or biuret formation.

Non-isothermal Decomposition Kinetics of a New High-energy Organic Potassium Salt: K(DNDZ)

  • Xu, Kangzhen;Zhao, Fengqi;Song, Jirong;Ren, Xiaolei;Gao, Hongxu;Xu, Siyu;Hu, Rongzu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2259-2264
    • /
    • 2009
  • A new high-energy organic potassium salt, 2-(dinitromethylene)-1,3-diazepentane potassium salt K(DNDZ), was synthesized by reacting of 2-(dinitromethylene)-1,3-diazepentane (DNDZ) and potassium hydroxide. The thermal behavior and non-isothermal decomposition kinetics of K(DNDZ) were studied with DSC, TG/DTG methods. The kinetic equation is $\frac{d{\alpha}}{dT}$ = $\frac{10^{13.92}}{\beta}$3(1 - $\alpha$[-ln(1 - $\alpha$)]$^{\frac{2}{3}}$ exp(-1.52 ${\times}\;10^5$ / RT). The critical temperature of thermal explosion of K(DNDZ) is $208.63\;{^{\circ}C}$. The specific heat capacity of K(DNDZ) was determined with a micro-DSC method, and the molar heat capacity is 224.63 J $mol^{-1}\;K^{-1}$ at 298.15 K. Adiabatic time-to-explosion of K(DNDZ) obtained is 157.96 s.

Growth Kinetics and Electronic Properties of Passive Film of Nickel in Borate Buffer Solution (Borate 완충용액에서 니켈 산화피막의 생성 과정과 전기적 성질)

  • Kim, Younkyoo
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.1
    • /
    • pp.9-16
    • /
    • 2014
  • In a borate buffer solution, the growth kinetics and the electronic properties of passive film on nickel were investigated, using the potentiodynamic method, chronoamperometry, and single- or multi-frequency electrochemical impedance spectroscopy. The oxide film formed during the passivation process of nickel has showed the electronic properties of p-type semiconductor, which follow from the Mott-Schottky equation. It was found out that the passive film ($Ni(OH)_2$) of Ni formed in the low electrode potential changes to NiO and NiO(OH) while the electrode potential increases.

Prediction Model for the Microstructure and Properties in Weld Heat Affected Zone: II. Prediction Model for the Austenitization Kinetics and Austenite Grain Size Considering the Effect of Ferrite Grain Size in Fe-C-Mn Steel (용접 열영향부 미세조직 및 재질예측 모델링: II. Fe-C-Mn 강에서 페라이트 결정립크기의 영향을 고려한 Austenitization kinetics 및 오스테나이트 결정립크기 예측모델)

  • Ryu, Jong-Geun;Moon, Joon-Oh;Lee, Chang-Hee;Uhm, Sang-Ho;Lee, Jong-Bong;Chang, Woong-Sung
    • Journal of Welding and Joining
    • /
    • v.24 no.1
    • /
    • pp.77-87
    • /
    • 2006
  • Considering ferrite grain size in the base metal, the prediction model for $A_{c3}$ temperature and prior austenite grain size at just above $A_{c3}$ temperature was proposed. In order to predict $A_{c3}$ temperature, the Avrami equation was modified with the variation of ferrite grain size, and its kinetic parameters were measured from non-isothermal data during continuous heating. From calculation using a proposed model, $A_{c3}$ temperatures increased with increasing ferrite grain size and heating rate. Meanwhile, by converting the phase transformation kinetic model that predicts the ferrite grain size from austenite grain size during cooling, a prediction model for prior austenite grain size at just above the $A_{c3}$ temperature during heating was developed.

Austenite Grain Growth Prediction Modeling of C-Mn-Mo-Ni Steel HAZ Considering Precipitates (C-Mn-Mo-Ni강 용접열영향부의 석출물을 고려한 오스테나이트 결정립 성장 거동 예측)

  • 서영대;엄상호;이창희;김주학;홍준화
    • Journal of Welding and Joining
    • /
    • v.20 no.5
    • /
    • pp.78-86
    • /
    • 2002
  • A metallurgical model for the prediction of prior austenite grain size considering the dissolution kinetics of M$_3$C precipitates at the heat affected zone of SA508-cl.3 was proposed. The isothermal kinetics of grain growth and dissolution were respectively described by well-known equation, $dD/dT=M({\Delta}F_{eff})^M$ and Whelan's analytical model. The isothermal grain growth experiments were carried out for measure the kinetic parameters of grain growth. The precipitates of the base metal and the specimens exposed to thermal cycle were examined by TEM-carbon extraction replica method. The model was assessed by the comparison of BUE simulation experiments and showed good consistencies. However, there was no difference between the model considering and ignoring $M_3C$ precipitates. It seems considered that pinning force exerted by $M_3C$ Precipitates was lower than driving force for grain growth due to large size and small fraction of precipitates, and mobility of grain boundary was low in the lower temperature range.

Macro-Kinetics of Biofiltration for Odor Control:Dimethyl Disulfide

  • Kim, Jo-Chun;Bora C. Arpacioglu;Eric R. Allen
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E3
    • /
    • pp.165-174
    • /
    • 2002
  • A dual -column biofilter system with two different composts was used to investigate the macro-kinetics of dim-ethyl disulfide (DMDS) degradation. The biofilter columns were filled with compost mixtures up to one meter, The gas How rate and DMDS concentration to the biofilters were varied to study their effect on the removal characteris-tics of DMDS. It was found that the biodegradation of DMDS was governed by zero-order reaction -limited macro-kinetics for inlet DMDS concentrations between 10 and 55 ppmv. The overall average zero-order kinetic coeffi-cient for DMDS removal by compost was 0.50 ($\pm$0.1) ppm/sec for both compost mixtures studied. Variations in individual kinetic coefficients were observed due to varying environmental conditions, such as pH and temperature. The kinetic coefficients determined are specific to the system discussed in this work. During high acidity conditions in the filter beds, methyl mercaptan (MM) was observed in the gas samples collected. Appearance of MM was pro-bably due to decreased microbial activity in the lower portions of the biofilter. Considering the neutral pH range required and the presence of methyl mercaptan, it is likely that the microorganisms present in the biofilters used in this research are similar to the T. thioparus (strain E6) species.

Formulation and Evaluation of Controlled Release Patch Containing Naproxen (나프록센 함유 방출제어형 패취의 제제설계 및 평가)

  • Rhee, Gye-Ju;Hong, Seok-Cheon;Hwang, Sung-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.4
    • /
    • pp.343-348
    • /
    • 1999
  • The purpose of this study is to prepare the controlled release adhesive patch containing naproxen. Pressuresensitive adhesive (PSA)-type patch was fabricated by casting of polyisobutylene (PIE.) and mineral oil in toluene. Membrane-controlled release (MCR)-type patch was prepared by the attachment of the controlled release membrane on the PSAtype patch. The membrane was mainly composed of Eudragit, polyethylene glycol(PEG) and glycerin. The drug release profile and skin permeation test with various patches were evaluated in vitro. The release of naproxen from PIE-based PSAtype patch with various loading doses fitted Higuchi's diffusion equation. However, the permeation of naproxen through hairless mouse skin from PSA-type patch followed zero-order kinetics. In MCR-type patch, thickness of controlled release membrane affected on the drug release rate highly. In the composition of membrane, the release rate was decreased as the ratio of Eudragit increased. The drug release from the MCR-type patch followed zero order kinetics. The permeation of naproxen through hairless mouse skin from MCR-type patch showed lag time for the intial release period and didn't fit the zero-order kinetics

  • PDF

RESEARCH PAPERS : THE KINETICS ON THE BIOLOGICAL REACTION IN MEMBRANE BIOREACTOR (MBR) WITH GRAVITATIONAL AND TRANSVERSAL FILTRATION

  • Jang, Nam-J.;Hwang, Moon-H.;Yeo, Young-H.;Shim, Wang-G.;S. Vigneswaran;Kim, In-S.
    • Environmental Engineering Research
    • /
    • v.9 no.5
    • /
    • pp.238-247
    • /
    • 2004
  • The objective of this study was to develop kinetic model for the MBR and investigate kinetic characteristics of the gravitational flow transverse direction MBR system. Kinetic model was derived by mass balance of substratc and biomass combined with empirical membranc filtration rerm for the MBR. To find kinctic values, permeale flux and COD removal were analyzed through the laboratory, MBR operation as different solids retention times. Permeate flux was ranged 2.5-5.0 LMH (L/m$^2$/hr) as sludge characteristics in each run. Although the soluble COD in the bioreactor was changed, the effluent COD was stable as average 99% removal rate during the experimental periods. Y$_g$ of this MBR system was higher than those of cross-flow MBR processes. The kinetics of this MBR showed that smaller k, larger b, and larger K$_s$ values than the conventional activated sludge process. These results indicated that substrate was used for cell maintenance rather than growth in this MBR system.

Thermal Kinetics of Color Changes of Purple Sweet Potato Anthocyanin Pigment (자색고구마 Anthocyanin 색소의 가열에 대한 속도론적 연구)

  • Lee, Lan-Sook;Rhim, Jong-Whan
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.497-501
    • /
    • 1997
  • Kinetic parameters on heat-induced color changes of anthocyanin pigment from purple sweet potato were determined in the temperature range of $121{\sim}141^{\circ}C$. Color change determined by a browning index $(A_{532}\;nm/A_{420}\;nm)$ followed second order reaction kinetics. Activation energy values of purple sweet potato pigment solutions of pH 2.0, 3.0, 4.0 and 5.0 were 69.57, 76.68, 81.07 and 92.98 kJ/mol, respectively, indicating that temperature dependency of the reaction increased with pH. Apparent kinetic compensation effect between preex-ponential factor and activation energy value was observed.

  • PDF

Cure Behavior of a DGEBF Epoxy using Asymmetric Cycloaliphatic Amine Curing Agent (비대칭 고리형 지방족 아민 경화제를 이용한 DGEBF 계열 에폭시의 경화 거동)

  • Kim, Hongkyeong
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.200-204
    • /
    • 2008
  • The curing kinetics of diglycidyl ether of bisphenol F (DGEBF) with an asymmetric cycloaliphatic amine curing agent were examined by thermal analysis in both isothermal and dynamic curing conditions. From the residual curing of the samples partially cured in isothermal condition and from the dynamic curing with various heating rates, it was found that there exist two kinds of reactions such as at low temperature and at high temperature regions. It was thus also found that the cure parameters obtained from the isothermal curing kinetic model hardly estimate experimental results for a degree of cure larger than 0.6. The activation energies and frequency factors of these two kinds of reactions were obtained from the dynamic curing experiments with various heating rates. From the curing analysis, it was verified that the total cure kinetics for low degrees of cure is dominated by the cure reaction in the low temperature region.