Last 50 years there were a lot of space subjects launched by space activities of many states and these activities also had created tremendous, significant space debris contaminating the environment of outer space. The large number of space debris which are surrounding the earth have the serious possibilities of destroying a satellite or causing huge threat to the space vehicles. For example, Chinese anti-satellite missile test was conducted by China on January 11, 2007. As a consequence a Chinese weather satellite was destroyed by a kinetic kill vehicle traveling with a speed of 8 km/s in the opposite direction. Anti-satellite missile tests like this,contribute to the formation of enormous orbital space debris which can remain in orbit for many years and could interfere with future space activity (Kessler Syndrome). The test is the largest recorded creation of space debris in history with at least 2,317 pieces of trackable size (golf ball size and larger) and an estimated 150,000 debris particles and more. Several nations responded negatively to the test and highlighted the serious consequences of engaging in the militarization of space. The timing and occasion aroused the suspicion of its demonstration of anti-satellite (ASAT) capabilities following the Chinese test of an ASAT system in 2007 destroying a satellite but creating significant space debris. Therefore this breakup seemed to serve as a momentum of the UN Space Debris Mitigation Guidelines and the background of the EU initiatives for the International Code of Conduct for Outer Space Activities. The UN Space Debris Mitigation Guidelines thus adopted contain many technical elements that all the States involved in the outer space activities are expected to observe to produce least space debris from the moment of design of their launchers and satellites until the end of satellite life. Although the norms are on the voluntary basis which is normal in the current international space law environment where any attempt to formulate binding international rules has to face opposition and sometimes unnecessary screening from many corners of numerous countries. Nevertheless, because of common concerns of space-faring countries, the Guidelines could be adopted smoothly and are believed faithfully followed by most countries. It is a rare success story of international cooperation in the area of outer space. The EU has proposed an International Code of Conduct for Outer Space Activities as a transparency and confidence-building measure. It is designed to enhance the safety, security and sustainability of activities in outer space. The purpose of the Code to reduce the space debris, to allow exchange of the information on the space activities, and to protect the space objects through safety and security. Of the space issues, the space debris reduction and the space traffic management require some urgent attention. But the current legal instruments of the outer space do not have any binding rules to be applied thereto despite the incresing activities on the outer space. We need to start somewhere sometime soon before it's too late with the chaotic situation. In this article, with a view point of this problem, focused on the the Chinese test of an ASAT system in 2007 destroying a satellite but creating significant space debris and tried to analyse the issues of space debris reduction.
Chang, Yeon S.;Do, Jong Dae;Kim, Sun-Sin;Ahn, Kyungmo;Jin, Jae-Youll
Journal of Korean Society of Coastal and Ocean Engineers
/
v.29
no.4
/
pp.206-216
/
2017
The temporal distribution of the turbulence kinetic energy (TKE) and the vertical component of Reynolds stresses ($-{\bar{u^{\prime}w^{\prime}}}$) was measured during one wave period under high wave energy conditions. The wave data were obtained at Hujeong Beach in the east coast of Korea at January 14~18 of 2017 when an extratropical cyclone was developed in the East Sea. Among the whole thousands of waves measured during the period, hundreds of regular waves that had with similar pattern were selected for the analysis in order to give three representing mean wave patterns using the ensemble average technique. The turbulence properties were then estimated based on the selected wave data. It is interesting to find out that $-{\bar{u^{\prime}w^{\prime}}}$ has one clear peak near the time of flow reversal while TKE has two peaks at the corresponding times of maximum cross-shore velocity magnitudes. The distinguished pattern of Reynolds stress indicates that vertical fluxes of such properties as suspended sediments may be enhanced at the time when the horizontal flow direction is reversed to disturb the flows, supporting the turbulence convection process proposed by Nielsen (1992). The characteristic patterns of turbulence properties are examined using the CADMAS-SURF Reynolds-Averaged Navier-Stokes (RANS) model. Although the model can reasonably simulate the distribution of TKE pattern, it fails to produce the $-{\bar{u^{\prime}w^{\prime}}}$ peak at the time of flow reversal, which indicates that the application of RANS model is limited in the prediction of some turbulence properties such as Reynolds stresses.
Journal of Korean Society of Environmental Engineers
/
v.33
no.2
/
pp.85-92
/
2011
Evaluation of the removal efficiencies of Fe(II) by reactive sand media coated with manganese (MCS), iron (ICS) and both of iron and manganese (IMCS) was investigated as functions of solution pH ranging from 2 to 9, reaction time and concentration of Fe(II) in a batch reactor using each reactive medium and additional oxidants such as $KMnO_4$ and NaOCl. When only Fe(II) was present in solution without any reactive medium, removal of Fe(II) was quite low below pH 5 due to a slow oxidation of Fe(II) and/or negligible precipitation but greatly increased above pH 5 due to a rapid oxidation of Fe(II) and subsequent precipitation of oxidized Fe species. ICS showed negligible efficiency on the removal of Fe(II) through adsorption. However, an efficient removal of Fe(II) was observed at low solution pH in the presence of IMCS or MCS through rapid oxidation and subsequent precipitation. Removal efficiency of Fe(II) by IMCS in the presence or absence of NaOCl was quite similar. Removal rate of Fe(II) by IMCS and additional oxidants gradually increased as the solution pH increased. From the kinetic experiments, removal pattern of Fe(II) was better described by pseudo-second-order equation than pseudo-first-order equation. A rapid removal of Fe(II) using IMCS in the presence of $KMnO_4$ was observed in the first 10 min. The initial removal rate of Fe(II) using $KMnO_4$ was 14,286 mg/kg hr. In case of using NaOCl, the removal of Fe(II) occurred rapidly in the first 6 hrs and then reached the near-equilibrium state. Removal of Fe(II) on IMCS was well expressed by Langmuir isotherm and the maximum removal capacity of Fe(II) was calculated as 1,088 mg/kg.
This study was carried out 1) to investigate the pH effect on solubilization of phenanthrene by biosurfactant in aqueous system and 2) to evaluate the pH effect on the biodegradation rate of phenanthrene in the presence and the absence of the biosurfactant by phenanthrene degraders. Tween 80, which is a chemically synthesized surfactant, showed greater solubilizing capacity than rhamnolipid. The solubilization capacity can be expressed as a MSR(molar solubilization ratio=moles of organic compounds solubilized per mole of surfactant). The calculated MSR of Tween 80 and rhamnolipid were 0.1449 and 0.0425 respectively. The kinetic study of phenanthrene solubilization by rhamnolipid showed that solubilization mechanism could reach equilibrium within 24 hours. Addition of 240 ppm rhamnolipid solution, which concentration is 4.3 times of Critical Micelle Concentration(CMC), caused 9 times solubility enhancement compared to water solubility. The highest solubilities were detected around a pH range of 4.5-5.5. Changes in apparent solubility with the changes in pH are possibly related to the fact that the rhamnolipid, an anionic surfactant, can form different structures depending on the pH. Two biodegradation experiments were performed in the absence and the presence of rhamnolipid, with the cell growth investigated using a spread plate method. The specific growth rates at pH 6 and 7 were higher than at the other pH, and the HPLC analysis data, for the total phenanthrene loss, confirmed the trends in the $\mu$(specific growth rate) values. In presence of rhamnolipid, maximum $\mu$ values shifted from around pH 5 which showed maximum enhancement of solubility in the abiotic experiment, compared to the $\mu$ values obtained without the biosurfactant. In this study, the increase in the observed specific grow rate(1.44 times) was not as high as the increase in solubilization(5 times). This was supported by the fact all the solubilized phenanthrene is not bioavailable to microorganisms.
A determination method of aromatic amino acids such as trytophan (Trp), tyrosine (Tyr), and phenylalanine (Phe) using luminol-$H_2O_2$-Cu(II) system has been presented. In the presence of an aromatic amino acid, the enhanced chemiluminescence (CL) intensity of luminol-$H_2O_2$-Cu(II) system was obtained by forming a complex between Cu(II) and the amino acid. Based on the above phenomenon, a sensitive and fast determination of three aromatic amino acids was performed using the CL method in batch-type detection system. To optimize determination conditions, the kinetic influence of an aromatic amino acid on the luminol-$H_2O_2$-Cu(II) system and the effects of $H_2O_2$ and Cu(II) concentration, pH, and buffers were investigated. Under the optimized conditions, the calibration curve was linear over the range from $1.0{\times}10^{-6}$ to $2.0{\times}10^{-5}\;M$ for Trp, $1.0{\times}10^{-6}$ to $2.0{\times}10^{-5}\;M$ for Try, and $2.0{\times}10^{-6}$ to $2.0{\times}10^{-5}\;M$ for Phe, respectively. In this range, reproducibility (RSD, n = 4) of Trp, Try, and Phe were 3.21%, 2.64%, and 2.48%, respectively. The limit of detection ($3{\sigma}/s$) was calculated to be $6.8{\times}10^{-7}\;M$ for Trp, $5.7{\times}10^{-7}\;M$ for Try, and $9.6{\times}10^{-7}\;M$ for Phe.
Journal of the Korea Organic Resources Recycling Association
/
v.2
no.2
/
pp.3-17
/
1994
The inhibitory effect of sodium ion on the anaerobic degradation of food waste was studied by an anaerobic batch toxicity assay and inhibition model. The anaerobic degradation activity of food waste spiked with over $2g\;Na^+/L$ of sodium ion was severely inhibited at the initial stage of the exposure. The inhibition response of anaerobic microorganisms on the sodium ion estimated from the methane production was differed according to the concentration of sodium ion. The relative acclimation time(RAT) and methanation rate(RMR), defined as the ratios of initial lag time and maximum methane production rate of the sample spiked with sodium ion to the control. respectively, were used to evaluate the acclimation and inhibitory effects quantitatively on the anaerobic microorganisms. When sodium ion was increased from $2g\;Na^+/L$ to $20g\;Na^+/L$, the RAT was exponentially increased from 18.9 to 90. but the RMR was linearly decreased from 0.97 to 0.02. The effects of sodium ion for the maximum methanation rate, first order kinetic constant and ultimate methane production were well evaluated by a generalized nonlinear expression model. it could be described by the uncompetitive inhibition mode. The sodium ion concentration causing 50% inhibition of methanation activity was about $11g\;Na^+/L$, and the critical sodium ion beyond to compelete inhibition was 20 to $21g\;Na^+/L$. The presented results could be used to obtain the design or operation parameters of the anaerobic process treating food waste of high salt.
Purpose: The diagnostic utility of fluorine-18 2-deoxy-D-glucose positron emission tomograhpy ($^{18}F-FDG $PET) for the non-invasive differentiation of focal lung lesions originated from cancer or inflammation disease by combined visual image interpretation and semi-quantitative uptake value analysis has been documented. In general, Standardized Uptake Value(SUV) is used to diagnose lung disease. But SUV does not contain dynamic information of lung tissue for the glucose. Therefore, this study was undertaken to hypothesis that analysis of dynamic kinetics of focal lung lesions base on $^{18}F-FDG$ PET may more accurately determine the lung disease. So we compared Time Activity Curve(TAC), Standardized Uptake Value-Dynamic Curve(SUV-DC) graph pattern with Glucose Metabolic Rate(MRGlu) from Patlak analysis. Methods: With lung disease, 17 patients were examined. They were injected with $^{18}F-FDG$ over 30-s into peripheral vein while acquisition of the serial transaxial tomographic images were started. For acquisition protocol, we used twelve 10-s, four 30-s, sixteen 60-s, five 300-s and one 900-s frame for 60 mins. Its images were analyzed by visual interpretation TAC, SUV-DC and a kinetic analysis(Patlak analysis). The latter was based on region of interest(ROIs) which were drawn with the lung disease shape. Each optimized patterns were compared with itself. Results: In TAC patterns, it hard to observe cancer type with inflammation disease in early pool blood area but over the time cancer type slope more remarkably increased than inflammation disease. SUV-DC was similar to TAC pattern. In the result of Patlak analysis, In time activity curve of aorta, even though inflammation disease showed higher blood activity than cancer, at first as time went by, blood activity of inflammation disease became the lowest. However, in time activity curve of tissue, cancer had the highest uptake and inflammation disease was in the middle. Conclusion: Through the examination, TAC and SUV-DC could approached the results that lung cancer type and inflammation disease type has it's own difference shape patterns. Also, it has outstanding differentiation between cancer type and inflammation in Patlak and MRGlu analysis. Through these analysis methods, it will helpful to separation lung disease.
Park, Chang-Jin;Kim, Dong-Kuk;Ok, Yong-Sik;Ryu, Kyung-Ryul;Lee, Ju-Young;Zhang, Yong-Seon;Yang, Jae-E
Applied Biological Chemistry
/
v.47
no.3
/
pp.344-350
/
2004
This study was conducted to develop and assess the applicability of mixed-bed ion exchange resin capsules for water quality monitoring in small agricultural watershed. Recoveries of resin capsules for inorganic N and P ranged from 96 to 102%. The net activation energies and pseudo-thermodynamic parameters, such as ${\Delta}G^{o\ddag},\;{\Delta}H^{o\ddag},\;and\;{\Delta}S^{o\ddag}$ for ion adsorption by resin capsules, exhibited relatively low values, indicating the process might be governed by chemical reactions such as diffusion. However, those values increased with temperature coinciding with the theory. The reaction reached pseudo-equilibrium within 24 hours for $NH_4-N\;and\;NO_3-N$, and only 8 hours for $PO_4-P$, respectively. The selectivity of resin capsules were in the order of $NO_3\;^-\;>\;NH_4\;^+\;>\;PO_4\;^{3-}$, coinciding with that of encapsulated Amberlite IRN-150 resin. At the initial state of equilibrium, the resin adsorption quantity was linearly proportional to the mass of ions in the streams, but the rate of movement leveled off, following Langmuir-type sorption isotherm. The overall results demonstrated that the resin capsule system was suitable for water quality monitoring in small agricultural watershed, judging from the reaction mechanism(s) of the resin capsule and the significance of model in field calibration.
Kim, Soon-Oh;Lee, Woo-Chun;Jeong, Hyeon-Su;Cho, Hyen-Goo
Journal of the Mineralogical Society of Korea
/
v.22
no.3
/
pp.177-189
/
2009
Iron (oxyhydr)oxides commonly form as secondary minerals of high reactivity and large surface area resulting from alteration and weathering of primary minerals, and they are efficient sorbents for inorganic and organic contaminants. Accordingly, they have a great potential in industrial applications and are also of substantial interest in environmental sciences. Goethite (${\alpha}$-FeOOH) is one of the most ubiquitous and stable forms of iron (oxyhydr)oxides in terrestrial soils, sediments, and ore deposits, as well as a common weathering product in rocks of all types. This study focused on adsorption reaction as a main mechanism in scavenging arsenic using goethite. Goethite was synthesized in the laboratory to get high purity, and a variety of mineralogical and physicochemical features of goethite were measured and related to adsorption characteristics of arsenic. To compare differences in adsorption reactions between arsenic species, in addition, a variety of experiments to acquire adsorption isotherm, adsorption edges, and adsorption kinetics were accomplished. The point of zero charge (PZC) of the laboratory-synthesized goethite was measured to be 7.6, which value seems to be relatively higher, compared to those of other iron (oxyhydr)oxides. Its specific surface area appeared to be $29.2\;m^2/g$ and it is relatively smaller than those of other (oxyhydr)oxides. As a result, it was speculated that goethite shows a smaller adsorption capacity. It is likely that the affinity of goethite is much more larger for As(III) (arsenite) than for As(V) (arsenate), because As(III) was observed to be much more adsorbed on goethite than As(V) in equivalent pH conditions. When the adsorption of each arsenic species onto goethite was characterized in various of pH, the adsorption of As(III) was largest in neutral pH range (7.0~9.0) and decreased in both acidic and alkaline pH conditions. In the case of As(V), the adsorption appeared to be highest in the lowest pH condition, and then decreased with an increase of pH. This peculiarity of arsenic adsorption onto goethite might be caused by macroscopic electrostatic interactions due to variation in chemical speciation of arsenic and surface charge of goethite, and also it is significantly affected by change in pH. Parabolic diffusion model was adequate to effectively evaluate arsenic adsorption on goethite, and the regression results show that the kinetic constant of As(V) is larger than that of As(III).
Arsenic contamination may be brought about by a variety of natural and anthropogenic causes. Among diverse naturally-occurring chemical speciations of arsenic, trivalent (As(III), arsenite) and pentavalent (As(V), arsenate) forms have been reported to be the most predominant ones. It has been well known that the behavior of arsenic is chiefly affected by aluminum, iron, and manganese oxides. For this reason, this study was initiated to evaluate the applicability of manganese slag (Mn-slag) containing high level of Mn, Si, and Ca as an efficient sorbent of arsenic. The main properties of Mn-slag as a sorbent were investigated and the sorption of each arsenic species onto Mn-slag was characterized from the aspects of equilibrium as well as kinetics. The specific surface area and point of zero salt effect (PZSE) of Mn-slag were measured to be $4.04m^2/g$ and 7.73, respectively. The results of equilibrium experiments conducted at pH 4, 7 and 10 suggest that the sorbed amount of As(V) was relatively higher than that of As(III), indicating the higher affinity of As(V) onto Mn-slag. As a result of combined effect of pH-dependent chemical speciations of arsenic as well as charge characteristics of Mn-slag surface, the sorption maxima were observed at pH 4 for As(V) and pH 7 for As(III). The sorption of both arsenic species reached equilibrium within 3 h and fitting of the experimental results to various kinetic models shows that the pseudo-second-order and parabolic models are most appropriate to simulate the system of this study.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.