• Title/Summary/Keyword: KIER

Search Result 540, Processing Time 0.029 seconds

Characteristics Analysis of Stabilizing Operation of Photovoltaic Inverter (태양광 발전용 인버터의 안정화 운전 특성해석)

  • Cho, G.B.;Kim, H.S.;Yu, G.J.;Song, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.742-745
    • /
    • 1993
  • In this paper, instantaneous current tracking control inverter is applied to photovoltaic system and then optimum operating area is described by state space average method for optimum design of maximum output control. Also control system is realized by DSP and excellence of system shows the effectiveness of inverter system using the instantaneous control method.

  • PDF

Experimental Study of a Solar Drying System (태양열 건조시스템의 실험적 연구 (I))

  • Lee, K.D.;Lee, N.H.;Auh, P.C.M.
    • Solar Energy
    • /
    • v.7 no.1
    • /
    • pp.14-22
    • /
    • 1987
  • This paper presents an experimental study of a solar drying system designed and installed by KIER. Experiments have been performed using the KIER system for the drying of marine products, such as squid. Presented in detail are the experimental observations of collector air temperature, solar intensity, absorber plate temperature, drying chamber temperature, humidity and other measures of drying chamber performance with variation of air mass flow rate. As a result, average temperature attained in the drying chamber during autumn weather has been adequated for drying of squids.

  • PDF

Preparation and Characterization of Ionic Liquid-based Electrodes for High Temperature Fuel Cells Using Cyclic Voltammetry

  • Ryu, Sung-Kwan;Choi, Young-Woo;Kim, Chang-Soo;Yang, Tae-Hyun;Kim, Han-Sung;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.1
    • /
    • pp.30-38
    • /
    • 2013
  • In this study, a catalyst slurry was prepared with a Pt/C catalyst, Nafion ionomer solution as a binder, an ionic liquid (IL) (1-butyl-3-methylimidazolium tetrafluoroborate), deionized water and ethanol as a solvent for the application to polymer electrolyte fuel cells (PEFCs) at high-temperatures. The effect of the IL in the electrode of each design was investigated by performing a cyclic voltammetry (CV) measurement. Electrodes with different IL distributions inside and on the surface of the catalyst electrode were examined. During the CV test, the electrochemical surface area (ESA) obtained for the Pt/C electrode without ILs gradually decreased owing to three mechanisms: Pt dissolution/redeposition, carbon corrosion, and place exchange. As the IL content increased in the electrode, an ESA decrement was observed because ILs leaked from the Nafion polymer in the electrode. In addition, the CVs under conditions simulating leakage of ILs from the electrode and electrolyte were evaluated. When the ILs leaked from the electrode, minor significant changes in the CV were observed. On the other hand, when the leakage of ILs originated from the electrolyte, the CVs showed different features. It was also observed that the ESA decreased significantly. Thus, leakage of ILs from the polymer electrolyte caused a performance loss for the PEFCs by reducing the ESA. As a result, greater entrapment stability of ILs in the polymer matrix is needed to improve electrode performance.

Hydrocarbon Composite Membranes with Improved Oxidative Stability for PEMFC (산화안정성 향상을 위한 고분자연료전지용 탄화수소복합막의 제조 및 특성연구)

  • Lee, Hyejin;Choi, Young-Woo;Yang, Tae-Hyun;Bae, Byungchan
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.44-48
    • /
    • 2014
  • Sulfonated poly(arylene ether sulfone)-cerium composite membranes with improved oxidative stability were prepared for proton exchange membrane fuel cell application. Oxidative stability of the composite membranes changed depending on the amount of incorporated metal. Their water uptake, IEC and proton conductivity were also affected. ICP analysis confirmed trace of cerium ion in the composite membranes and $^1H$-NMR indicated successful coordination of sulfonic acid groups with the metal ions. Increasing amount of the cerium ion resulted in decrease in proton conductivities and water uptake, but enhanced oxidative stabilities. A hydrogen peroxide exposure equipment was used for the test of oxidative stability of the composite membranes, which enabled to mimic fuel cell operating condition compared with conventional Fenton's test.

Synthesis and Characterization of Multi-Block Sulfonated Poly (Arylene Ether Sulfone) Polymer Membrane with Different Hydrophilic Moieties for PEMFC (서로 다른 친수성구조를 가지는 고분자전해질 연료전지용 멀티블록형 술폰산화 폴리아릴렌에테르술폰 전해질막의 합성 및 특성 분석)

  • Yuk, Jinok;Lee, Sojeong;Yang, Tae-Hyun;Bae, Byungchan
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.2
    • /
    • pp.75-80
    • /
    • 2015
  • Multi-block sulfonated poly(arylene ether sulfone) (SPAES) copolymer was synthesized via nucleophilic aromatic substitution reaction for proton exchange membrane fuel cell application. After synthesizing the hydrophilic and hydrophobic precursor oligomers having different end-groups (F-terminated or OH-terminated), the effect of end group on the molecular weight was investigated. Hydrophilic oligomers with hydroquinone showed better performance as fuel cell membranes. SPAES membranes showed comparable proton conductivity to that of Nafion at $80^{\circ}C$ and above 70% RH. In particular, SPAES 9 with hydroquinone showed higher proton conductivity than SPAES 10 in the whole RH range studied. Increased local concentration of sulfonic acids within hydrophilic block might develop the hydrophilic-hydrophobic phase separation in the block copolymers.

A Study on Reaction Characteristics of Fe$_2$O$_3$High-Temperature Desulfurization Sorbents (Fe$_2$O$_3$계 고온건식탈황제의 반응특성 연구)

  • Kang, Suk-Hwan;Rhee, Young-Woo;Kang, Yong;Han, Keun-Hee;Yi, Chang-Keun;Jin, Gyoung-Tae;Son, Jae-Ek;Park, Yeong-Seong
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.123-130
    • /
    • 1996
  • Reduction, sulfidation, and regeneration reactions were performed using domestic and Australian iron ore in order to develop a desulfurizing sorbent for the high temperature desulfurization process that is one of major processes in the integrated coal gasification combined cycle (IGCC) system. A TGA (Thermogravimetric Analysis) reactor and a fixed-bed reactor were used. Some basic kinetic information was obtained from BET surface area measurements, SEM photos, cyclic reactions, reaction temperature changes and TGA curves of the sorbents. The rates of both desulfurization and regeneration increased with increasing reaction temperature in the range of 500-700$^{\circ}C$.

  • PDF

Design Checklist for Self-sufficient Zero Energy Solar House(ZeSH) (에너지자립형 태양열 주택의 설계 및 시공 방법 체크리스트 수립 연구)

  • Yoon Jongho;Baek Namchoon;Yu Changkyun;Kim Jongil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.416-421
    • /
    • 2005
  • Most of solar system dissemination has been focused on domestic hot water system of which utilization to a building is relatively simple and safe than solar heating system. Through the survey on a cause of solar house dissemination failure in Korea, we conclude that design integration and systematic approach method for technology application are the most important element for a successful solar house. KIER(Korea Institute of Energy Research) and Hanbat National University have started new project on a development of Zero energy Solar House, called ZeSH which can be sustained just by natural energy without the support of existing fossil fuel. This is the 1st phase research of 10 years long-term ZeSH plan which develops a low-cost and $100\%$ self sufficient ZeSH. The goal of 1st phase ZeSH research is to get a $70\%$ self sufficiency only in thermal loads. Actual demonstration house, named KIER ZeSH I was designed and constructed as a result of 1st phase research work in the end of 2002. Various innovative technologies such as super insulation, high performance window, passive and active solar systems, ventilation heat recovery system are applied and evaluated to the KIER ZeSH I. A lot of computer simulations had been conducted for the optimal design and system integration in every design steps. Considering all the results from detailed hourly computer simulation, it is expected that at least $70\%$ self-sufficiency in thermal loads which is 1st phase target value can be excessively achieved in actual demonstration house. Besides, many valuable findings from the design and analysis to construction could be established such as collaboration method among the participants, practical design and construction techniques for system integration and the others. The purpose of this paper is to introduce the main findings through the development of KIER ZeSH I project. Practical guidelines in every design step for new low- or zero- energy solar house is proposed as result.

  • PDF

Introduction of KIER Pyrolysis Process and 3,000 ton/yr Demonstration Plant (KIER의 열분해유화 공정 기술과 실증플랜트 소개)

  • Shin, Dae-Hyun;Jeon, Sang-Gu;Kim, Kwang-Ho;Lee, Kyong-Hwan;Roh, Nam-Sun;Lee, Ki-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.479-482
    • /
    • 2008
  • Since late of 2000, KIER has developed a novel pyrolysis process for production of fuel oils from polymer wastes. It could have been possible due to large-scale funding of the Resource Recycling R&D Center. The target was to develop an uncatalyzed, continuous and automatic process producing oils that can be used as a fuel for small-scale industrial boilers. The process development has proceeded in three stages bench-scale unit, pilot plant and demonstration plant. As a result, the demonstration plant having capacity of 3,000 tons/year has been constructed and is currently under test operation for optimization of operation conditions. The process consisted of four parts ; feeding system, cracking reactor, refining system and others. Raw materials were pretreated via shredding and classifying to remove minerals, water, etc. There were 3 kind of products, oils(80%), gas(15%), carbonic residue(5%). The main products i.e. oils were gasoline and diesel. The calorific value of gas has been found to be about 18,000kcal/$m^3$ which is similar to petroleum gas and shows that it could be used as a process fuel. Key technologies adopted in the process are 1) Recirculation of feed for rapid melting and enhancement of fluidity for automatic control of system, 2) Tubular reactor specially-designed for heavy heat flux and prevention of coking, 3)Recirculation of heavy fraction for prevention of wax formation, and 4) continuous removal & re-reaction of sludge for high yield of main product (oil) and minimization of residue. The advantages of the process are full automation, continuous operation, no requirement of catalyst, minimization of coking and sludge problems, maximizing the product(fuel oil) yield and purity, low initial investment and operation costs and environment- friendly process. In this presentation, background of pyrolysis technology development, the details of KIER pyrolysis process flow, key technologies and the performances of the process will be discussed in detail.

  • PDF

Experimental Study on the Cooling and Heating Operation Characteristics of a Sea Water Source Heat Pump (해수열원 히트펌프 시스템의 냉난방 운전 특성에 관한 실증 연구)

  • Kim, Ji-Young;Baik, Young-Jin;Chang, Ki-Chang;Ra, Ho-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.544-549
    • /
    • 2009
  • The purpose of this study is to investigate the field Operation Characteristics of a sea water heat source cascade heat pump system and system applicable to Building. Cascade heat pump system is composed R410A compressor, R134a compressor, EEV, cascade heat exchanger, Plate heat exchanger etc. Building area is $890m^2$ and has five floors above ground. R410A is used for a low-stage working fluid while R134a is for a high-stage. The system could runs at dual mode. One is mode of general R410A refrigeration cycle in summer and the other is cascade cycle. In order to gain a high temperature supply water in winter season, the system is designed to perform a cascade cycle. The filed test results show that the sea water heat source heat pump system exhibits a COP of about 5.5 in cooling mode along with a heating COP of about 4.0 in 1-stage heating mode. Cascade 2-stage heat pump system is enough to supply $60^{\circ}C$ water and heating COP is about 3.0

  • PDF

A study on composite membranes based on hydrocarbon polymers and ionic liquids for high temperature PEFCs (고온 PEFCs를 위한 탄화수소계열 고분자와 이온성 액체를 함유하는 복합막에 관한 연구)

  • Baek, Ji-Suk;Park, Jin-Soo;Kim, Kyung-Hyun;Moon, Gi-Young;Kim, Hye-Kyung;Choi, Young-Woo;Park, Go-Gun;Yang, Tae-Hyun;Kim, Chang-Soo;Shul, Young-Gun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.147-148
    • /
    • 2009
  • The water-like ionic liquids have been widely used to enable the proton conduction in ionic liquid based membranes at high temperature and anhydrous PEFCs. In this study, we synthesized various kinds of composite membranes based on hydrocarbon polymers having good thermal and mechanical stabilities at high temperatures and ionic liquids. The composite membrane consisting of hydrocarbon polymer and ionic liquid was characterized by thermogravimetric analyzer (TGA) and impedance spectroscopy. Consequently the non-aqueous composite membranes of a variety of hydrocarbon polymer and ionic liquids have good conductivity and thermal stability at high temperature conditions.

  • PDF