• Title/Summary/Keyword: KDESCENT

Search Result 4, Processing Time 0.018 seconds

Parametric Study on Design Factors of the Shutdown Cooling Heat Exchanger Using the Taguchi Method

  • Kim Seong Hoon;Ryu Seung Yeob;Choi Byung Seon;Yoon Juhyeon;Bae Yoon Yeong;Zee Sung Kyun
    • Nuclear Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.251-259
    • /
    • 2003
  • The Taguchi method was applied to investigate the effect of design factors on the performance of the shutdown cooling heat exchanger in the SMART-P. This method provided the simulation matrix for the KDESCENT program and an efficient tool for analyzing the simulation results. Levels of the design factors were selected by the effectiveness-NTU method. From 18 runs with the KDESCENT program, it was found that the performance of the system was greatly influenced by the inlet temperature at the shell side and the mass flow rate of the reactor coolant at the tube side. After applying the Taguchi method, we identified the important design factor that should be controlled and designed carefully. This method provides an efficient way to estimate the influence of each design factor on a system performance.

Analysis of Cooldown Capability for the HWR Shutdown Cooling System (중수로 정지냉각계통의 냉각능력 분석)

  • Sin, Jeong-Cheol
    • Journal of Energy Engineering
    • /
    • v.20 no.4
    • /
    • pp.259-266
    • /
    • 2011
  • Following the reactor shutdown, the reactor shutdown cooling system must be designed to supply the coolant sufficiently not only to remove the decay heat but to maintain the adequate cooling rate to protect the reactor equipments. In this study, KDESCENT code for the light water reactor and SOPHT, SDCS codes for the heavy water reactor were compared and analyzed to investigate the cooling capability during the shutdown cooling process. The shutdown cooling system design requirements were satisfied during cooling process for both the SDCP and the HTP modes and the design cooling rate of $2.8^{\circ}C/min$ or below was maintained using the SDC heat exchangers. This study shows that the shutdown cooling system in the Wolsong 2, 3, 4 reactors provides sufficient cooling to maintain the nuclear fuel integrity by removing the decay heat of the nuclear fission product.

A Study of Cooldown Performance of Shutdown Cooling System of Korea Next Generation Reactor (차세대 원자로 정지냉각계통의 냉각 성능에 대한 연구)

  • 유성연;이상섭
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.525-532
    • /
    • 1999
  • The standardized Korea Next Generation Reactor (KNGR) NSSS has developed in the basis of the ABB-CE System 80+ design concept. In this study, several regulatory requirements for the KNGR shutdown cooling system (SCS) operation are investigated. The purpose of this study is to establish the technical self-reliance for SCS design by supporting fundamental data such as SDCHX effective area and reactor CCW flow rate. Thermal power of KNGR would be increased to about 4,000 $MW_{th}$ in comparison with thermal power 2.825 $MW_{th}$ of UCN 3&4, therefore, SCS design data shall b recalculated by using the KDESCENT Code, which could evaluate cooling capability of SCS. It is found that SCS minimum flow rate is able to remove the primary sensible heat. Reviewing the major components such as heat exchanger, pump, value, and operating procedure, it is concluded as follows.

  • PDF

영광 3&4호기 부분충수운전시 정지냉각계통 최소유량 감소에 대한 영향분석

  • 오광석;오종필;김도현;이중섭;유병철
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.385-390
    • /
    • 1996
  • 영광 3&4호기의 부분충수운전시 정지냉각계통 최소유량의 감소에 따른 영향을 노심의 잔열제거 능력 및 저압안전주입펌프의 성능 측면에서 분석하였다. 정지냉각계통 성능해석용 전산코드인 KDESCENT를 수정하여 사용하였으며 보수적인 초기조건 및 가정을 사용하였다. 분석결과 부분충수 운전동안 원자로냉각재의 최고 허용온도를 작업자의 접근을 위한 설계온도인 140 ℉로 설정할 경우 원자로 정지후 4일 시점에서 이를 만족할 수 있는 정지냉각계통의 최소유량은 실제값으로 3000 gpm(계측기의 오차포함 3440 gpm)임을 알 수가 있었다. 이 유량은 붕산희석이나 성층화, 저압안전 주입펌프의 성능 측면에서도 허용가능한 값이다.

  • PDF