• Title/Summary/Keyword: KDD Process

Search Result 21, Processing Time 0.028 seconds

Implementation of Management performance Analysis System with KDD (KDD에 기반한 경영성과 분석 시스템 구현)

  • An, Dong-Gyu;Jo, Seong-Hun
    • 한국디지털정책학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.575-592
    • /
    • 2004
  • In modern dynamic management environment, there is growing recognition that? information & knowledge management systems are essential for CEO's efficient/effective decision making. As a key component to cope with this current, we suggest the management performance analysis syystem based on Knowledge Discovery in Database (KDD). The system measures management performance that is considered with both VA(Value- Added), which represents stakeholder's point of view and EVA(Economic Value-Added), which represents shareholder's point of view. The relation ship between management performance and some 80 financial ratios is analyzed, and then important financial ratios are drawn out. In analyzing the relationship, we applied KDD process which includes such as multidimensional cube, OLAP(On-Line Analytic Process), data mining and AHP(Analytic Hierarchy Process). To demonstrate the performance of the system, we conducted a case study using financial data over the 16-years from 1981 to 1996 of Korean automobile industry which is taken from database of KISF AS(Korea Investors Services Financial Analysis System).

  • PDF

Development of a Knowledge Discovery System using Hierarchical Self-Organizing Map and Fuzzy Rule Generation

  • Koo, Taehoon;Rhee, Jongtae
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.431-434
    • /
    • 2001
  • Knowledge discovery in databases(KDD) is the process for extracting valid, novel, potentially useful and understandable knowledge form real data. There are many academic and industrial activities with new technologies and application areas. Particularly, data mining is the core step in the KDD process, consisting of many algorithms to perform clustering, pattern recognition and rule induction functions. The main goal of these algorithms is prediction and description. Prediction means the assessment of unknown variables. Description is concerned with providing understandable results in a compatible format to human users. We introduce an efficient data mining algorithm considering predictive and descriptive capability. Reasonable pattern is derived from real world data by a revised neural network model and a proposed fuzzy rule extraction technique is applied to obtain understandable knowledge. The proposed neural network model is a hierarchical self-organizing system. The rule base is compatible to decision makers perception because the generated fuzzy rule set reflects the human information process. Results from real world application are analyzed to evaluate the system\`s performance.

  • PDF

Linear profile monitoring with random covariate (설명변수가 랜덤인 성형 프로파일 연구)

  • Kim, Daeun;Lee, Sungim;Lim, Johan
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.3
    • /
    • pp.335-346
    • /
    • 2022
  • Profile control chart aims to detect a change in the functional relationship of multivariate characteristics in the statistical process control. In monitoring two variables, a linear profile is of interest composed of the intercept and slope of one variable (response variable) against the other (explanatory variable). The previous studies on monitoring of the linear profile mostly assume that the explanatory variables are the same for all profiles. However, there are also cases where they vary depending on profiles. This paper intends to extend the monitoring method to where explanatory variables are different for each profile. We compare the new method's performance through simulation and apply it to monitoring a network intrusion using NSL-KDD data.

Implementation of Management performance Analysis System with Genetic Algorithms (Genetic Algorithm에 기반한 경영성과분석 시스템 구현)

  • An, Dong-Gyu;Jo, Seong-Hun
    • 한국디지털정책학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.191-210
    • /
    • 2003
  • In modern dynamic management environment, there is growing recognition that information & knowledge management systems are essential for CEO's Efficient/effective decision making, As a key component to cope with this current, we suggest the management performance analysis system based on Knowledge Discovery in Database (KDD). The system measures management performance that is considered with both VA(Value-Added), which represents stakeholder's point of view and EVA(Economic Value-Added), which represents shareholder's point of view, The relationship between management performance and some 80 financial ratios is analyzed, and then important financial ratios are drawn out. In analyzing the relationship, we applied KDD process which includes such as multidimensional cube, OLAP(On -Line Analytic Process), data mining and AHP(Analytic Hierarchy Process). To demonstrate the performance of the system, we conducted a case study using financial data over the 16-years from 1981 to 1996 of Korean automobile industry which is taken from database of KISFAS(Korea Investors Services Financial Analysis System).

  • PDF

ICAIM;An Improved CAIM Algorithm for Knowledge Discovery

  • Yaowapanee, Piriya;Pinngern, Ouen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.2029-2032
    • /
    • 2004
  • The quantity of data were rapidly increased recently and caused the data overwhelming. This led to be difficult in searching the required data. The method of eliminating redundant data was needed. One of the efficient methods was Knowledge Discovery in Database (KDD). Generally data can be separate into 2 cases, continuous data and discrete data. This paper describes algorithm that transforms continuous attributes into discrete ones. We present an Improved Class Attribute Interdependence Maximization (ICAIM), which designed to work with supervised data, for discretized process. The algorithm does not require user to predefine the number of intervals. ICAIM improved CAIM by using significant test to determine which interval should be merged to one interval. Our goal is to generate a minimal number of discrete intervals and improve accuracy for classified class. We used iris plant dataset (IRIS) to test this algorithm compare with CAIM algorithm.

  • PDF

Modeling a Business Performance Information System with Knowledge Discovery in Databases (데이터베이스 지식발견체계에 기반한 경영성과 정보시스템의 구축)

  • Cho, Seong-Hoon;Chung, Min-Yong;Kim, Jong-Hwa
    • IE interfaces
    • /
    • v.14 no.2
    • /
    • pp.164-171
    • /
    • 2001
  • We suggest a Business Performance Information System with Knowledge Discovery in Databases(KDD) as a key component of integrated information and knowledge management system. The proposed system measures business performance by considering both VA(Value-Added), which represents stakeholder's point of view and EVA(Economic Value-Added), which represents shareholder's point of view. In modeling of Business Performance Information System, we apply the following KDD processes : Data Warehouse for consistent management of a performance data, On-Line Analytic Processing(OLAP) for multidimensional analysis, Genetic Algorithms for exploring and finding dominant managing factors and Analytic Hierarchy Process(AHP) for applying expert's knowledge and experience. To demonstrate the performance of the system, we conducted a case study using financial data of Korean automobile industry over 16 years from 1981 to 1996, which is taken from database of KISFAS(Korea Investors Services Financial Analysis System).

  • PDF

A Better Prediction for Higher Education Performance using the Decision Tree

  • Hilal, Anwar;Zamani, Abu Sarwar;Ahmad, Sultan;Rizwanullah, Mohammad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.209-213
    • /
    • 2021
  • Data mining is the application of specific algorithms for extracting patterns from data and KDD is the automated or convenient extraction of patterns representing knowledge implicitly stored or captured in large databases, data warehouses, the Web, other massive information repositories or data streams. Data mining can be used for decision making in educational system. But educational institution does not use any knowledge discovery process approach on these data; this knowledge can be used to increase the quality of education. The problem was happening in the educational management system, but to make education system more flexible and discover knowledge from it huge data, we will use data mining techniques to solve problem.

A Study on a Statistical Matching Method Using Clustering for Data Enrichment

  • Kim Soon Y.;Lee Ki H.;Chung Sung S.
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.509-520
    • /
    • 2005
  • Data fusion is defined as the process of combining data and information from different sources for the effectiveness of the usage of useful information contents. In this paper, we propose a data fusion algorithm using k-means clustering method for data enrichment to improve data quality in knowledge discovery in database(KDD) process. An empirical study was conducted to compare the proposed data fusion technique with the existing techniques and shows that the newly proposed clustering data fusion technique has low MSE in continuous fusion variables.

An Analysis of Intrusion Pattern Based on Backpropagation Algorithm (역전파 알고리즘 기반의 침입 패턴 분석)

  • Woo Chong-Woo;Kim Sang-Young
    • Journal of Internet Computing and Services
    • /
    • v.5 no.5
    • /
    • pp.93-103
    • /
    • 2004
  • The main function of the intrusion Detection System (IDS) usee to be more or less passive detection of the intrusion evidences, but recently it is developed with more diverse types and methodologies. Especially, it is required that the IDS should process large system audit data fast enough. Therefore the data mining or neural net algorithm is being focused on, since they could satisfy those situations. In this study, we first surveyed and analyzed the several recent intrusion trends and types. And then we designed and implemented an IDS using back-propagation algorithm of the neural net, which could provide more effective solution. The distinctive feature of our study could be stated as follows. First, we designed the system that allows both the Anomaly dection and the Misuse detection. Second, we carried out the intrusion analysis experiment by using the reliable KDD Cup ‘99 data, which would provide us similar results compared to the real data. Finally, we designed the system based on the object-oriented concept, which could adapt to the other algorithms easily.

  • PDF