• 제목/요약/키워드: KDD

검색결과 125건 처리시간 0.025초

인공신경망을 통한 KDD CUP 99와 NSL-KDD 데이터 셋 비교 (A Study on comparison of KDD CUP 99 and NSL-KDD using artificial neural network)

  • 지현정;김용현;김동화;신동규;신동일
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 춘계학술발표대회
    • /
    • pp.211-213
    • /
    • 2017
  • 최근 컴퓨터 네트워크를 활용하는 다양한 기기들이 개발되고 급격히 확산되면서, 컴퓨터 네크워크는 전보다 많은 보안문제에 직면하게 되었다. 이에 따라 네트워크 보안을 위한 침입탐지시스템의 필요성이 대두된다. 침입탐지시스템을 구현하기 위한 대표적인 데이터 셋으로는 KDD CUP 99(KDD'99)와 이후 KDD'99의 문제점을 보완하여 공개된 NSL-KDD가 있다. 본 논문에서는 KDD'99와 NSL-KDD를 소개하고 인공신경망을 통해 두 데이터 셋을 비교 분석하였다. Multi-Layer Perceptron을 사용해 데이터 셋을 분석해본 결과, KDD'99는 전체 정확도에서 더 높은 결과를 얻은 반면 공격 별 탐지 정확도 면에서는 NSL-KDD에 뒤쳐졌다.

흰쥐에서 아급성 연독성에 대한 감두탕의 예방효과에 관한 연구(I) - 장기 및 대변의 축적에 미치는 영향을 중심으로 - (A Study on the Preventive Effect of Kam Doo Decoction on the Subacute Lead Toxicity in Rats)

  • 이선동;이용욱;방형애
    • 한국환경보건학회지
    • /
    • 제19권4호
    • /
    • pp.67-82
    • /
    • 1993
  • This study was performed to investigate the preventive effect of KDD against lead toxicity. KDD of 133, 266, 532 and 1,064 mg/kg were administered twice to the rats of Sprague-Dawley strain and then 300 mg/kg lead acetate was given to times, respectively. 1. The accumulation effects of KDD against to lead showed the changes of lead concentration by time variation. But, no statistical significance were showed on 8 and 10 weeks for kidney, spleen, 8 weeks for liver, and 4, 6 and 8 weeks for duodenum. In the femur, statistical significance existed during the whole experimental period. The relatively high concentration of lead detected in the feces of the experimental group means that KDD facilitated excretion of lead. 2. The histopathological effect of KDD against lead showed cytomegaly, karyomegaly, inclusion body, urinary cast and hemosiderin of kidney in the experimental group I (Pb 300 mg/kg). Recovery of KDD administrated group was inclined to increase by KDD concentration. But, spleen's histopathological recovery of KDD aginst to lead did not show as much as kidney. In conclusion, this study revealed the preventive effect of KDD against lead toxicity and its mechanism inferred to facilitate lead excretion in feces following hinderance of lead absorption in the gastric-intestine and organs.

  • PDF

Bandwidth-Adaptive Video Transmission Method for Heterogeneous Network Environment

  • Sakazawa, S.;Takishima, Y.;Wada, M.;Amano, K.
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 1997년도 Proceedings International Workshop on New Video Media Technology
    • /
    • pp.49-54
    • /
    • 1997
  • For the purpose of a flexible coded video transmission over a heterogeneous network, we propose a new packetization method for coded video data. The proposed method achieves small degradation of coded picture quality in case of packet discard at the network node and does not require heavy processing load for bitrate control operation. Computer simulation results show that the bitrate reduction from 384 kb/s to 192 kb/s does not cause severe degradation in picture quality.

  • PDF

KDD와 데이터마이닝을 이용한 바이러스성전염병 유행예측조사 (Virus communicable disease cpidemic forecasting search using KDD and DataMining)

  • 윤종찬;윤성대
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 춘계학술발표대회
    • /
    • pp.47-50
    • /
    • 2004
  • 본 논문은 대량의 데이터를 처리하는 전염병에 관한 역학조사에 대한 과정을 KDD(Knowledge Discovery in Database)와 데이터마이닝 기법을 이용해서 의료 전문인들의 지식을 데이터베이스화하여 데이터 선정, 정제, 보강, 예측과 빠른 데이터 검출을 하도록 하였다. 그리고 각 바이러스의 동향은 데이터마이닝을 활용하므로 일부분만의 데이터를 산출하지 않고 전체적인 동향을 산출, 예측하도록 한다.

  • PDF

KDD에 기반한 경영성과 분석 시스템 구현 (Implementation of Management performance Analysis System with KDD)

  • 안동규;조성훈
    • 한국디지털정책학회:학술대회논문집
    • /
    • 한국디지털정책학회 2004년도 춘계학술대회
    • /
    • pp.575-592
    • /
    • 2004
  • In modern dynamic management environment, there is growing recognition that? information & knowledge management systems are essential for CEO's efficient/effective decision making. As a key component to cope with this current, we suggest the management performance analysis syystem based on Knowledge Discovery in Database (KDD). The system measures management performance that is considered with both VA(Value- Added), which represents stakeholder's point of view and EVA(Economic Value-Added), which represents shareholder's point of view. The relation ship between management performance and some 80 financial ratios is analyzed, and then important financial ratios are drawn out. In analyzing the relationship, we applied KDD process which includes such as multidimensional cube, OLAP(On-Line Analytic Process), data mining and AHP(Analytic Hierarchy Process). To demonstrate the performance of the system, we conducted a case study using financial data over the 16-years from 1981 to 1996 of Korean automobile industry which is taken from database of KISF AS(Korea Investors Services Financial Analysis System).

  • PDF

An Intrusion Detection Model based on a Convolutional Neural Network

  • Kim, Jiyeon;Shin, Yulim;Choi, Eunjung
    • Journal of Multimedia Information System
    • /
    • 제6권4호
    • /
    • pp.165-172
    • /
    • 2019
  • Machine-learning techniques have been actively employed to information security in recent years. Traditional rule-based security solutions are vulnerable to advanced attacks due to unpredictable behaviors and unknown vulnerabilities. By employing ML techniques, we are able to develop intrusion detection systems (IDS) based on anomaly detection instead of misuse detection. Moreover, threshold issues in anomaly detection can also be resolved through machine-learning. There are very few datasets for network intrusion detection compared to datasets for malicious code. KDD CUP 99 (KDD) is the most widely used dataset for the evaluation of IDS. Numerous studies on ML-based IDS have been using KDD or the upgraded versions of KDD. In this work, we develop an IDS model using CSE-CIC-IDS 2018, a dataset containing the most up-to-date common network attacks. We employ deep-learning techniques and develop a convolutional neural network (CNN) model for CSE-CIC-IDS 2018. We then evaluate its performance comparing with a recurrent neural network (RNN) model. Our experimental results show that the performance of our CNN model is higher than that of the RNN model when applied to CSE-CIC-IDS 2018 dataset. Furthermore, we suggest a way of improving the performance of our model.

설명변수가 랜덤인 성형 프로파일 연구 (Linear profile monitoring with random covariate)

  • 김다은;이성임;임요한
    • 응용통계연구
    • /
    • 제35권3호
    • /
    • pp.335-346
    • /
    • 2022
  • 통계적 공정관리에서 프로파일 관리도란 다수의 품질 특성치 간 함수관계의 변화를 탐지하는 것을 말한다. 두 변수 간 선형의 관계가 있는 경우, 선형 프로파일을 가정하고 절편과 기울기가 일정한지 모니터링한다. 이때 선형 프로파일에 관한 대부분의 기존 연구에서는 모든 프로파일에서 설명변수의 관측치가 동일하다고 가정한다. 그러나 프로파일마다 설명변수의 값이 랜덤하게 관측되는 경우도 존재한다. 본 논문에서는 단순 선형 프로파일 모니터링에서 설명변수가 프로파일마다 랜덤하게 관측된다는 가정하에 기존의 방법을 확장 적용하고자 한다. 모의실험을 통해 제안한 방법의 탐지 성능을 확인하고 네트워크 침입 탐지 알고리즘 성능을 비교하기 위한 NSL-KDD 데이터를 이용하여 제안된 침입 탐지 결과를 비교해 보았다.

SHAP 기반 NSL-KDD 네트워크 공격 분류의 주요 변수 분석 (Analyzing Key Variables in Network Attack Classification on NSL-KDD Dataset using SHAP)

  • 이상덕;김대규;김창수
    • 한국재난정보학회 논문집
    • /
    • 제19권4호
    • /
    • pp.924-935
    • /
    • 2023
  • Purpose: The central aim of this study is to leverage machine learning techniques for the classification of Intrusion Detection System (IDS) data, with a specific focus on identifying the variables responsible for enhancing overall performance. Method: First, we classified 'R2L(Remote to Local)' and 'U2R (User to Root)' attacks in the NSL-KDD dataset, which are difficult to detect due to class imbalance, using seven machine learning models, including Logistic Regression (LR) and K-Nearest Neighbor (KNN). Next, we use the SHapley Additive exPlanation (SHAP) for two classification models that showed high performance, Random Forest (RF) and Light Gradient-Boosting Machine (LGBM), to check the importance of variables that affect classification for each model. Result: In the case of RF, the 'service' variable and in the case of LGBM, the 'dst_host_srv_count' variable were confirmed to be the most important variables. These pivotal variables serve as key factors capable of enhancing performance in the context of classification for each respective model. Conclusion: In conclusion, this paper successfully identifies the optimal models, RF and LGBM, for classifying 'R2L' and 'U2R' attacks, while elucidating the crucial variables associated with each selected model.

퍼지와 인공 신경망을 이용한 침입탐지시스템의 탐지 성능 비교 연구 (Comparison of Detection Performance of Intrusion Detection System Using Fuzzy and Artificial Neural Network)

  • 양은목;이학재;서창호
    • 디지털융복합연구
    • /
    • 제15권6호
    • /
    • pp.391-398
    • /
    • 2017
  • 본 논문에서는 "퍼지 컨트롤 언어를 이용한 공격 특징 선택기반 네트워크 침입탐지 시스템"[1]과 "RNN을 이용한 공격 분류를 위한 지능형 침입탐지 시스템 모델"[2]의 성능을 비교 하였다. 이 논문에서는 KDD CUP 99 데이터 셋[3]을 이용하여 두 기법의 침입 탐지 성능을 비교하였다. KDD CUP 99 데이터 셋에는 훈련을 위한 데이터 셋과 훈련을 통해 기존의 침입을 탐지 할 수 있는 테스트 데이터 셋이 있다. 또한 훈련 데이터 및 테스트 데이터에 존재 하지 않는 침입의 유형을 탐지할 수 있는가를 테스트 할 수 있는 데이터도 존재한다. 훈련 및 테스트 데이터에서 좋은 침입탐지 성능을 보이는 두 개의 논문을 비교하였다. 비교한 결과 존재하는 침입을 탐지 하는 성능은 우수하지만 기존에 존재하지 않는 침입을 탐지 하는 성능은 부족한 부분이 있다. 공격 유형 중 DoS, Probe, R2L는 퍼지를 이용하는 것이 탐지율이 높았고, U2L은 RNN을 이용하는 것이 탐지율이 높았다.

네트워크 비정상 탐지를 위한 속성 축소를 반영한 의사결정나무 기술 (Decision Tree Techniques with Feature Reduction for Network Anomaly Detection)

  • 강구홍
    • 정보보호학회논문지
    • /
    • 제29권4호
    • /
    • pp.795-805
    • /
    • 2019
  • 최근 알려지지 않은 공격에 대처하기 위한 네트워크 비정상(anomaly) 탐지 기술에 대한 관심이 한층 높아지고 있다. 이러한 기술 개발을 위해 데이터 마이닝(data mining), 기계학습(machine learning), 그리고 딥러닝(deep learning)등을 활용한 다양한 연구가 진행되고 있다. 본 논문에서는 분류(classification) 문제를 다루는 데이터 마이닝 기술 중 가장 전통적인 방법 중 하나인 의사결정나무(decision tree)를 이용하여 NSL-KDD 데이터 셋을 대상으로 네트워크 비정상 탐지 가능성을 보여준다. 의사결정나무의 과대적합(over-fitting) 단점을 해소하기 위해 카이-제곱(chi-square) 테스트를 통해 최적의 속성 선택(feature selection)을 수행하고, 선택된 13개의 속성을 사용한 의사결정나무 모델 환경에서 NSL-KDD 시험 데이터 셋 KDDTest+에 대해 84% 그리고 KDDTest-21에 대해 70%의 네트워크 비정상 검출 정확도를 보였다. 제시된 정확도는 기존 의사결정나무 모델 적용 시 이들 시험 데이터 셋을 대상으로 알려진 정확도 81% 그리고 64% 수준과 비교해 약 3% 그리고 6% 각각 향상된 결과다.