• Title/Summary/Keyword: KCN addition

Search Result 16, Processing Time 0.024 seconds

Antithrombin and Thrombosis Prevention Activity of Buckwheat Seed, Fagopyrum esculentum Moench (메밀 종자의 항트롬빈 활성과 혈전증 예방효과)

  • Sohn, Ho-Yong;Kwon, Chong-Suk;Son, Kun-Ho;Kwon, Gi-Seok;Ryu, Hee-Young;Kum, Eun-Joo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.2
    • /
    • pp.132-138
    • /
    • 2006
  • Direct thrombin inhibitor, which is effective to prevent or cure the thrombosis, has been investigated in worldwide. In this study, we tried to screen antithrombosis agent from edible or medicinal plant. A strong antithrombin activity was identified from methanol or $95\%$ ethanol extract of buckwheat seeds. The solvent fractionation of buckwheat extracts using hexane, ethylacetate, butanol revealed that the butanol fraction has a prominent antithrombin activity. Thrombin time (blood-clot formation time) exceeded to over $2,000\%$ by addition of the butanol fraction at concentration of $312.5{\mu}g/mL$, whereas thrombin time extended to $336\%$ by addition of aspirin at concentration of $1,500{\mu}g/mL$. The butanol fraction showed anthrone-positive and ninhydrine-negative reaction. The active components were heat-liable, acid-unstable non-proteinous macromolecules (>30 KD). In vivo analysis using ICR male mouse showed that the buckwheat extract was superior than the aspirin in pulmonary thrombosis, KCN-induced coma and death. Our results suggest that the buckwheat is a potential as an antithrombosis agent and medicinal food.

Characterization of the Membrane Potential Relevant to Permeability Changes in the Plasmalemma of Lemna gibba G3 (좀개구리밥 (Lenma gibba G3)의 원형질막의 투과성 변화와 관련된 막전위의 특성)

  • 윤병길
    • Journal of Plant Biology
    • /
    • v.33 no.2
    • /
    • pp.135-140
    • /
    • 1990
  • The membrane potential in the subepidermal cells of Lemna gibba G3 fronds was measured in the dark with glass capillary microelectrodes. At pH 7, the membrane potential, approximately-215 mV, could be depolarized to -82∼-88 mV by 0.1 mM dicyclohexylcarbodiimide (DCCD) or by KCN at 0.3 mM or higher concentrations. When the pH of the medium was altered the potential showed reversible changes, while it revealed no response to the external pH changes when energy transduction across the membrane was being blocked by 0.1 mM DCCD. The results support an assumption that the active component of the membrane potential of Lemna subepidermal cells is generated by electrogenic H+ -pump. By the addition of 0.10∼5.00 mM salicylic acid(SA) to the bathing medium the membrane potential was depolarized to a great extent, and the removal of SA from the medium repolarized the potential showing almost complete recovery, 92.3∼97.6% to the initial levels. Although the potential was greatly depolarized by 5.0% or higher concentrations of dimethylsulfoxide (DMSO), the recovery rate by DMSO removal was decreased as the pretreatment concentration had increased. Twenty percent DMSO pretreatment limited the recovery at only 47.1%. The presence of SA in the bathing medium could reversibly increase the permeability of the plasmalemma. DMSO at its concentration of 5.0% or higher increased the permeability of the membrane by irrevesibly impairing the membrane component involved in the membrane permeability.

  • PDF

Dielectric and Piezoelectric Properties of (K0.5Na0.5) (Nb0.97Sb0.03)O3 Ceramics Doped with K4CuNb8O23

  • Lee, Sang-Ho;Lee, Kab-Soo;Yoo, Ju-Hyun;Jeong, Yeong-Ho;Yoon, Hyun-Sang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.2
    • /
    • pp.72-75
    • /
    • 2011
  • In this study, $(K_{0.5}Na_{0.5})(Nb_{0.97}Sb_{0.03})O_3+0.9$ mol% $K_{5.4}Cu_{1.3}Ta_{10}O_{29}+x$ mol% $K_4CuNb_8O_{23}$ (x = 0, 0.2, 0.6, 0.8) ceramics were prepared by a conventional mixed oxide method. Their microstructure and electric properties were investigated. The secondary phase was made by virtue of $K_4CuNb_8O_{23}$ (KCN) addition in the $(K_{0.5}Na_{0.5})(Nb_{0.97}Sb_{0.03})O_3$ system ceramics. However, the sinterability of the ceramics increased with increasing $K_4CuNb_8O_{23}$ content. At the 0.6 mol% $K_4CuNb_8O_{23}$ added composition ceramics sintered at $1,060^{\circ}C$, kp and $d_{33}$ showed the optimum values of 0.39 and 145 pC/N, respectively, suitable for piezoelectric actuator application.

Alterations in Membrane Transport Function and Cell Viability Induced by ATP Depletion in Primary Cultured Rabbit Renal Proximal Tubular Cells

  • Lee, Sung-Ju;Kwon, Chae-Hwa;Kim, Yong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.1
    • /
    • pp.15-22
    • /
    • 2009
  • This study was undertaken to elucidate the underlying mechanisms of ATP depletion-induced membrane transport dysfunction and cell death in renal proximal tubular cells. ATP depletion was induced by incubating cells with 2.5 mM potassium cyanide(KCN)/0.1 mM iodoacetic acid(IAA), and membrane transport function and cell viability were evaluated by measuring $Na^+$-dependent phosphate uptake and trypan blue exclusion, respectively. ATP depletion resulted in a decrease in $Na^+$-dependent phosphate uptake and cell viability in a time-dependent manner. ATP depletion inhibited $Na^+$-dependent phosphate uptake in cells, when treated with 2 mM ouabain, a $Na^+$ pump-specific inhibitor, suggesting that ATP depletion impairs membrane transport functional integrity. Alterations in $Na^+$-dependent phosphate uptake and cell viability induced by ATP depletion were prevented by the hydrogen peroxide scavenger such as catalase and the hydroxyl radical scavengers(dimethylthiourea and thiourea), and amino acids(glycine and alanine). ATP depletion caused arachidonic acid release and increased mRNA levels of cytosolic phospholipase $A_2(cPLA_2)$. The ATP depletion-dependent arachidonic acid release was inhibited by $cPLA_2$ specific inhibitor $AACOCF_3$. ATP depletion-induced alterations in $Na^+$-dependent phosphate uptake and cell viability were prevented by $AACOCF_3$. Inhibition of $Na^+$-dependent phosphate uptake by ATP depletion was prevented by antipain and leupetin, serine/cysteine protease inhibitors, whereas ATP depletion-induced cell death was not altered by these agents. These results indicate that ATP depletion-induced alterations in membrane transport function and cell viability are due to reactive oxygen species generation and $cPLA_2$ activation in renal proximal tubular cells. In addition, the present data suggest that serine/cysteine proteases play an important role in membrane transport dysfunction, but not cell death, induced by ATP depletion.

Study in the Respiratory Metabolism in Some Bivalves(II) on the Oxidative Metabolism and its Enzyme System in the Gill Tissue of the Fresh Water Mussel, Cristaria plicata spatiosa (CLESSIN) (패류의 호흡대사에 관한 연구(II) 담수산 패류, Cristaria plicata spatiosa (CLESSIN), 아가미 조직의 산화적 대사와 그 효소분에 대하여)

  • 한문희;김동준;최희정
    • The Korean Journal of Zoology
    • /
    • v.4 no.1
    • /
    • pp.7-12
    • /
    • 1961
  • 1) Respiratory metabolism patterns and its enzyme systems in the gill tissue of the fresh water mussels, Cristaria plicata were investigated through the examination on the effects of respiratory enzyme inhibitors, (KCN, NAF) and succinoxidase assay, while studying the effects of neutral salts (NaCL, KCL, CaCl2) and pH on oxygen consumption of the gill tissue. 2) In the limited concentration of KCL (0.3mM) and NaCl (0.4mM) solutions, oxygen consumption of the intact gill tissue was accelerated, but in CaCl2(0.5mM) solution, it showed no significant effect. The oxygen consumption was gradually decreased at the above concentrations of these limitations. The optimum pH for the respiration of the gill was 7.3. 3)Cyanide in 10-8M solution inhibited 88.8% of the respiration of the intact gill tissue. Methylene blue accelerated the respiration of the noral gill tissue, and slightly but significantly reversed the cyaniide poisoned respiration. 4)Oxygen consumption of the gill homogenate was apparently increased by the mixed addition of succinate, cytochrome c and activators (AlCl3 and CaCl2). This results suggested that succinoxidase system acts on the respiratory pattern of the gil tissue. 5) It was able to recognize that the enolase, which acts on the anaerobic glycolytic system, participated in the tissue respiration of the gill for NaF in 5$\times$10-2 M solution inhibited 55.5% of the respiration of the same intact tissue.

  • PDF

Kinetic and Spectral Investigations on $Ca^{2+}$ - and Sr$^{2+}$ -containing Methanol Dehydrogenases

  • Kim, Si-Wouk;Kim, Chun-Sung;Lee, Jung-Sup;Koh, Moon-Joo;Yang, Song-Suk;Duine, Johannis-A.;Kim, Young-Min
    • Journal of Microbiology
    • /
    • v.35 no.3
    • /
    • pp.200-205
    • /
    • 1997
  • Bothl $Ca^{2+}$ and Sr$^{2+}$-containing methanol dehydrogenases (MDH) were purified to homogeneity with yields of 48% and 42%, respectively, from Methylabacillus methanolovorus sp. strain SK5. Most of the biochemical and structural properties were similar to each other. However, some differences were found: (1) although the overall shape of the absorption spectrum of Sr$^{2+}$-MDH was very similar to that of $Ca^{2+}$-MDH, the absorption intensity originating from the cofactor in Sr$^{2+}$. MDH was higher than that in $Ca^{2+}$-MDH. Small blue shift of the maximum was also observed. These are probably due to a difference in redox state of the cofactors in $Ca^{2+}$ and Sr$^{2+}$-MDH; (2) Sr$^{2+}$-MDH was more heat-stable than $Ca^{2+}$-MDH above 56$^{\circ}C$; (3) the V$_{max}$ values for the methanol-dependent activities of Sr$^{2+}$- and $Ca^{2+}$-MDH in the presence of 3 mM KCN were 2.038 and 808 nmol/mg protein/min, respectively. In addition, the $K_{m}$ values of Sr$^{2+}$ and $Ca^{2+}$ MDH for methanol were 12 and 21 $\mu$M, respectively; (4) the endogenous activity of $Ca^{2+}$-MDH was more sensitive than that of Sr$^{2+}$-MDH in the presence of cyanide; (5) Diethyl pyrocarbonate treatment increased the enzyme activities of $Ca^{2+}$- and Sr$^{2+}$-MDH 4.2- and 1.4-folds, respectively. These results indicate that Sr$^{2+}$ stabilizes the structural conformation and enhances the activity of MDH more than $Ca^{2+}$.

  • PDF