• Title/Summary/Keyword: KCL-2

Search Result 689, Processing Time 0.034 seconds

Preparation of Porous Glass by the Sintering (소결법에 의한 다공질유리의 제조)

  • 박용완;이준영
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.957-968
    • /
    • 1994
  • Manufacturing process of porous glass by the filler method was studied. Commercial soda-lime-silicate glass powder was mixed with inorganic salt as the filler such as KCl, K2SO4, Na2SO4. Sintering shrinkages of mixed powders with the variation of sintering temperature were compared, and the effects of the fillers to shrinkages of mixed powder were increased in the order of Na2SO4${\mu}{\textrm}{m}$ of pore diameter were manufactured when the filler sizes 100~200 ${\mu}{\textrm}{m}$. The open pore volume of porous glass is determined by the quantity of filler and porous glasses having open pore volume between 30 and 70 vol% are available. Available sintering temperature range for preparation of porous glass is from the softening temperature of the glass powder to eutectic melting temperature of DTA curve of mixed powder.

  • PDF

Effect of Diluents on the Cold Storage of Sperm in Scapharca broughtonii (Schrenck) (피조개, Scapharca broughtonii (Schrenck) 정자의 냉장보존에 미치는 희석액의 효과)

  • Rha, Sung-Ju;Lee, Sung-Hun;Kho, Kang-Hee
    • The Korean Journal of Malacology
    • /
    • v.26 no.2
    • /
    • pp.145-149
    • /
    • 2010
  • The effects of diluents composition on cold storage for Scapharca broughtonii (Schrenck) sperm were examined in the percentage of sperm activity and survival rate. Various diluents of glucose solutions (10 mM Hepes-pH 7.8), 600 mM NaCl, stein solution, Ringer's solution (230 mM NaCl, 8 mM KCl, 2 mM $CaCl_2$, 3.7 mM $MgCl_2$, 0.2 mM $NaHCO_3$, 10 mM Hepes-pH 7.8), 20%, 25% ASW (NaCl 2.7 g + KCl 0.07 g + $CaCl_2$ 0.12 g + $MgCl_2$ 0.46 g + $NaHCO_3$ 0.05 g + distilled water 100 ml) were used to store th sperm at $4^{\circ}C$. The storage effect was evaluated using sperm activity and survival rate. Ringer's solution was found to be better diluents which maintained high activity and survival rate of sperm for a storage period of 7 days. Optimal pH of diluents to store the sperm at $4^{\circ}C$ is 7.5.

Studies on Chromatographic Behaviors of the Metal Complexes by Various Eluents (용리제의 종류에 따른 금속착물의 크로마토그래피적인 거동에 관한 연구)

  • Chang Eon Oh;Doo Cheon Yoon
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.31-36
    • /
    • 1987
  • We examined eluting behaviors for cationic complexes with the eluting cations. Retention volumes of hydrophilic complexes when eluted by the high concentration of aqueous KCl, NaCl and $NH_4Cl solutions, have been increased in the order NH_4^+ > Na^+ > K^+$, but in the low concentration, retention volumes of hydrophilic complexes bave been increased in the order $Na^+ > NH4^+ > K^+$. On the order hand, retention volumes of hydrophobic complexes when eluted by aqueous KCl, NaCl and $NH_4Cl solutions, have been increased in the order NH_4^+ > Na^+ > K^+$ in the whole concentration range. And we examined eluting behaviors for cationic complexes with the eluting anions. Hydrophilic complexes were associated more strongly with chloride ion among halide ions. However, hydrophobic complexes were associated more strongly with iodide ion. Sulfate ion, a highly hydrated anion, was associated more strongly with hydrophilic complexes than with hydrophobic complexes.

  • PDF

A Study on the Electrochemical Properties of Langmuir-Blodgett Monolayer Film Mixed with Polyamic Acid and Sphingomyelin (인지질(Sphingomyelin)과 Polyamic Acid 혼합물의 단분자 LB막의 전기화학적 특성에 관한 연구)

  • Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.64-70
    • /
    • 2013
  • We investigated an electrochemical properties for Langmuir-Blodgett (LB) monolayer films of sphingomyelin and polyamic acid(1:1 molar ratio) mixture. LB monolayer films of mixture was deposited by the LB method on the indium tin oxide(ITO) glass. The electrochemical properties measured by cyclic voltammetry with three-electrode system in $KClO_4$ solution. The current of reduction and oxidation range was measured from 1650 mV to -1350 mV, continuously. The scan rates were 50, 100, 150, 200 and 250 mV/s, respectively. As a result, LB monolayer films of sphingomyelin and polyamic acid mixture was appeared on irreversible process caused by the reduction current from the cyclic voltammogram. Diffusion coefficient (D) in the sphingomyelin and polyamic acid mixture was calculated $2.67cm^2s^{-1}{\times}10^5$, $5.23cm^2s^{-1}{\times}10^6$ at 0.1 N and 0.2 N $KClO_4$ solutions, respectively.

No Relationship Between Spectrophotometric Absorbance and Ultrastructure in Mitochondrial Swelling and Contraction (미토콘드리아의 팽윤과 수축에 따른 분광흡광도와 미세구조간의 비연관성)

  • Boo, Moon-Jong;Lee, Kang-Oh;Kim, Jae-Jin;Choe, Rim-Soon
    • Applied Microscopy
    • /
    • v.20 no.2
    • /
    • pp.37-45
    • /
    • 1990
  • Ultrastructural and spectrophotometric studies on mitochondrial swelling and contraction were carried out. All mitochondria just after isolated from rat liver showed condensed conformation. When mitochondria were incubated in 0.25 M sucrose only, they were moderately swollen and the absorbance at 520 nm was slightly decreased. Adding ATP to sucrose caused the absorbance to increase and the mitochondria to contract partially. KCl solution of 0.3 M induced marked decrease of absorbance and swelling of mitochondria. When ATP was added to KCl, increase of the absorbance and no contraction of the mitochondria excluding increased electron density of mitochondrial intermembranes were observed. Markedly decreased absorbance and somewhat largely swelled mitochondria in sodium arsenite solution of 0.4 or 1.0 mM were observed. When ATP was added to sodium arsenite, the absorbance increased slightly but mitochondria were more contracted than those in KCl-treated group. Above results indicate that the absorbance may not be correlated to morphological observations in the mitochondrial swelling and contraction.

  • PDF

Sorption and Degradation of Benzene by Hydrogen Peroxide and Microorganism in a Sandy Soil (사질토양에서의 과산화수소 및 미생물에 의한 Benzene의 흡착 및 분해)

  • 백두성;박춘화;김동주
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.101-107
    • /
    • 2000
  • Column tests using KCl and Benzene as tracers were conducted for four different cases: 1) no hydrogen peroxide and no microorganism; 2) hydrogen peroxide only; 3) microorganism only; 4) hydrogen and microorganism to investigate the sorption and degradation characteristics of Benzene. The observed BTCs of KCl and Benzene in all cases showed that the arrival times of the peaks of both tracers coincided well but the peak concentration of Benzene was much lower than that of KCl. This result reveals that a predominant process affecting the transport of Benzene in a sandy soil is an irreversible sorption and/or degradation rather than retardation. Decay of Benzene through sorption and degradation increased with the addition of hydrogen peroxide and/or microorganism. Dissolved oxygen decreased with the increase of Benzene in all cases indicating that Benzene was degraded by dissolved oxygen. For BTCs with the addition of microorganisms (case 3 and case 4), microorganism showed much lower concentrations compared to the initial levels and an increasing tendency with time although concentrations of Benzene returned to zero, indicating a possible retardation of microorganism due to reversible and irreversible sorption to the particle surfaces.

  • PDF

Effects of Chemical Admixture on the Paste Fluidity and Mortar Strength Development of High Chloride Cement (염소 고함유시멘트의 페이스트 유동성과 모르타르 강도발현성에 미치는 화학 혼화제의 영향)

  • Jeong, Chan-Il;Park, Soo-Kyung;Lee, Eui-Hak;Lee, Kyung-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.1 s.296
    • /
    • pp.23-31
    • /
    • 2007
  • To examine the effects of chemical admixture on the fluidity and strength development of high chloride cement, experiments were conducted in which lignosulfonate (LS), naphthalenesulfonate (NS), and polycorboxylate (PC) were each added in standard and excessive amounts, and the results were as follows. 1. Because adding KCl to NS causes a decrease in flow, adding PC is better in maintaining high cement fluidity. 2. When cement contained much chloride comes in contact with water, hydration begins 4 h after contact and securing workability becomes difficult, but by adding PC, workability can be secured to 10 h. 3. The bound water ratio and compressive strength in aging 3 days occupy $70\sim80%$ of those in aging 28 days, and the early compressive strength increases not only by adding KCl, but also by chemical admixture. 4. Although compressive strength development is excellent in NS, PC, if NS is added excessively, hydration becomes slow and while the pore structures become slightly minute, the strength development decreases due to severe setting retardation.

Zeolite Filtration for Ammonium Nitrogen Removal in Drinking Water Treatment (정수처리에서 암모니아성질소 제거를 위한 제올라이트 여과)

  • 김우항;김충환
    • Journal of Environmental Science International
    • /
    • v.12 no.3
    • /
    • pp.281-286
    • /
    • 2003
  • This study was conducted to evaluate the feasibility of ammonia removal by zeolite adsorption in drinking water treatment. In generally, drinking water treatment process is conducted coagulation/flocculation, sedimentation, sand filtration and disinfection. We tested feasibility with two method, one is powdered zeolite dosing to coagulation tank and the other is to substitute granular zeolite for sand of sand filter. In powdered zeolite test, raw water is used tap water with putting of 2 mg/l of NH$_4$$\^$+/-N. Filtration of granular zeolite was conducted with 80 cm of effective column high and 120 m/d of flow rate. At above 100 mg/1 of zeolite dosage, ammonia concentration was decreased below 0.5 mg/l of NH$_4$$\^$+/-N in powdered zeolite test. But, turbidity was increased to 30 NTU by powdered zeolite dosage. That turbidity was scarcely decreased in generally coagulant using condition in drinking water treatment. In granular zeolite test, ammonia was not detected in treated water until 8 days. This result suggest that using of granular zeolite in sand filter could be removal ammonia in winter. But we need regeneration at zeolite filtration for ammonia removal. So, it is to make clear that zeolite regeneration ability was compared KCl with NaCl. The result reveal that KCl was more excellent than NaCl. Optimum regeneration concentration of KCl was revealed 100 mM. Regeneration efficient was not increased at pH range 10∼12.5.

Assessment on Recovery of Cesium, Strontium, and Barium From Eutectic LiCl-KCl Salt With Liquid Bismuth System

  • Woods, Michael E.;Phongikaroon, Supathorn
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.421-437
    • /
    • 2020
  • This study provides an assessment on a proposed method for separation of cesium, strontium, and barium using electrochemical reduction at a liquid bismuth cathode in LiCl-KCl eutectic salt, investigated via cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDS). CV studies were performed at temperatures of 723-823 K and concentrations of the target species up to 4.0wt%. Redox reactions occurring during potential sweeps were observed. Concentration of BaCl2 in the salt did not seem to influence the diffusivity in the studied concentration range up to 4.0wt%. The presence of strontium in the system affected the redox reaction of lithium; however, there were no distinguishable redox peaks that could be measured. Impedance spectra obtained from EIS methods were used to calculate the exchange current densities of the electroactive active redox couple at the bismuth cathode. Results show the rate-controlling step in deposition to be the mass transport of Cs+ ions from the bulk salt to the cathode surface layer. Results from SEM-EDS suggest that Cs-Bi and Sr-Bi intermetallics from LiCl-KCl salt are not thermodynamically favorable.

A Study on the Characteristics of Pollution Load in Biomass Power Plant with Ammonium Sulfate Injection (황산암모늄 주입시 바이오매스 발전소의 오염부하 특성 연구)

  • Lee, Chang-Yeol;Kim, Sung-Hoo;Chung, Jin-Do
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.640-646
    • /
    • 2018
  • Biomass-fired power plants produce electricity and heat by burning biomass in a boiler. However, one of the most serious problems faced by these plants is severe corrosion. In biomass boilers, corrosion comes from burnt fuels containing alkali, chlorine, and other corrosive substances, causing boiler tube failures, leakages, and shorter lifetimes. To mitigate the problem, various approaches implying the use of additives have been proposed; for example, ammonium sulfate is added to convert the alkali chlorides (mainly KCl) into the less corrosive alkali sulfates. Among these approaches, the high temperature corrosion prevention technology based on ammonium sulfate has few power plants being applied to domestic power plants. This study presents the results obtained during the co-combustion of wood chips and waste in a circulating fluidized bed boiler. The aim was to investigate the characteristics of pollution load in domestic biomass power plants with ammonium sulfate injection. By injecting the ammonium sulfate, the KCl content decreased from 68.9 to 5 ppm and the NOx were reduced by 18.5 ppm, but $SO_2$ and HCl were increased by 93.3 and 68 ppm, respectively.