• Title/Summary/Keyword: KASS

Search Result 609, Processing Time 0.027 seconds

Conceptual Design of KASS Uplink Station (한국형 위성항법보강시스템(KASS) 위성통신국 기본 설계)

  • You, Moonhee;Sin, Cheon Sig
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.72-77
    • /
    • 2017
  • The Satellite Based Augmentation System (SBAS) broadcasts to users integrity and correction information for Global Navigation Satellite System (GNSS) such as GPS and GLONASS using geostationary orbit (GEO) satellites. In accordance with the recommendation of the International Civilian Aeronautical Organization (ICAO) to introduce SBAS until 2025, a Korean SBAS system development / construction project is underway with the Ministry of Land, Transport and Maritime Affairs. Korea Augmentation Satellite System (KASS) is a high precision GPS correction system which is composed of KASS Reference Station (KRS), KASS Processing Station (KPS), KASS Uplink Station (KUS), KASS Control Station (KCS) and GEO satellites. In this paper, we provided the conceptual design of the KASS uplink station, which is composed of the Signal Generator Section (SGS) and the Radio-Frequency Section (RFS), and interface between the KASS ground sector and the GEO satellite.

Integration, Verification, Qualification Activities for KASS System (KASS 시스템 통합 및 검증 활동)

  • Hwanho Jeong;Minhyuk Son;ByungSeok Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.782-787
    • /
    • 2023
  • Korea augmentation satellite system (KASS) integration, verification, qualification (IVQ) activity is verification of requirements for KASS system and its sub-system that were performed based on the inspection, analysis, review of design, test (IART) method from factory acceptance test (FAT) to test readiness review (TRR) after critical design review (CDR) was closed. In the FAT phase, developed equipment was installed on the test platform and we were verified interfaces between sub-systems and coupling test with the kass control station (KCS). In the site aceeptance test (SAT) phase, on-site verification was conducted by installing equipment verified by FAT such as kass reference station (KRS), kass processing station (KPS), kass uplink station (KUS), KCS. However, considering the developed plan and status, SAT was divided into 3 phases and coupling test was performed. In the TRR phase, the KASS system verification was performed through FAT's test list and additional test list using the satellite based augmentation system (SBAS) broadcast signal from geostationary earth orbit (GEO) 1.

Configuration and Construction for the KASS KRS Site Infrastructure

  • Jang, HyunJin;Jeong, Hwanho;Son, Minhyuk;Lee, ByungSeok
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.2
    • /
    • pp.139-144
    • /
    • 2021
  • In this paper, we described configuration and construction of infrastructure for the KASS Reference Station (KRS), subsystem of Korea Augmentation Satellite System (KASS). KASS system consists of three subsystems(KRS, Mission Control Center (MCC), KASS Uplink Station (KUS)). One of these subsystems, KRS receives GNSS data for generating range error and integrity verification and sends to MCC. It is needed to antenna facilities for mounting GNSS antenna and shelter for operating KRS and infra equipment(power and network system, lightning and grounding system, fire extinguish) for operating KRS. For this reason, we have established the requirements for KRS infrastructure and constructed infrastructure for KRS to meet the requirements of KRS infrastructure.

Allocation of Design Assurance Level for KASS Based on International Standards (국제표준에 기반한 KASS 개발보증레벨 할당)

  • Bae, Dong-hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Since 2014, MOLIT (Ministry of Land, Infrastructure, and Transport) is carrying out a KASS project to develop and construct Korean SBAS. KASS can cause damage of human & properties if it has some problem during operation. Therefore, system safety assessment for KASS development is very important. Principal point of system safety assessment is the allocation of DAL(design assurance level) based on the hazard identification and classification. In this parer, the author conducts the allocation of DAL for KASS & its sub-systems based on the international standard(SAE ARP4761), which suggests a best practice of aviation system safety assessment. The result of this paper are the first step of system safety assessment, and can be used for further system safety assessment of KASS project.

Accuracy Evaluation of KASS Augmented Navigation by Utilizing Commercial Receivers

  • Sung-Hyun Park;Yong-Hui Park;Jin-Ho Jeong;Jin-Mo Park
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.349-358
    • /
    • 2023
  • The Satellite-Based Augmentation System (SBAS) plays a significant role in the fields of aviation and navigation: it corrects signal errors of the Global Navigation Satellite System (GNSS) and provides integrity information to facilitate precise positioning. These SBAS systems have been adopted as international standards by the International Civil Aviation Organization (ICAO). In recent SBAS system design, the Minimum Operational Performance Standards (MOPS) defined by the Radio Technical Commission for Aeronautics (RTCA) must be followed. In October 2014, South Korea embarked on the development of a Korean GPS precision position correction system, referred to as Korea Augmentation Satellite System (KASS). The goal is to achieve APV-1 Standard of Service Level (SoL) service level and acquisition of CAT-1 test operating technology. The first satellite of KASS, KASS Prototype 1, was successfully launched from the Guiana Space Centre in South America on June 23, 2020. In December 2022 and June 2023, the first and second service signals of KASS were broadcasted, and full-scale KASS correction signal broadcasting is scheduled to start at the end of 2023. The aim of this study is to analyze the precision of both the GNSS system and KASS system by comparing them. KASS is also compared with Japan's Multi-functional Satellite Augmentation System (MSAS), which is available in Korea. The final objective of this work is to validate the usefulness of KASS correction navigation in the South Korean operational environment.

SAT#1 (Preliminary Integration) Test Results of KASS System

  • Jeong, Hwanho;Jang, HyunJin;Kim, Koontack;Lee, Jaeeun;Lee, ByungSeok
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.2
    • /
    • pp.145-151
    • /
    • 2021
  • According to the Korea Augmentation Satellite System (KASS) system milestone, Site Acceptance Test (SAT) has three steps test until the end of the project. SAT#1 is the first time of SAT steps and verify the KASS Reference Station (KRS) and Sub System (S/S) for the monitoring and controllable. After the equipment and software were installed at the Mission Control Center (MCC) with Central Monitoring and Control Simulator (CMS) for the SAT#1, the 1:1 test was progressed when the KRS and S/S are ready to test. SAT#1 has a 10 steps test case and it was progressed each KRS sites. The test was finished throughout the real-time monitoring and the data collection including the data analysis all of the 7 KRS sites. Finally SAT#1 was completed on December 2020 with successfully.

Geodetic Survey Campaigns and Maintenance Plan for KASS Reference Station Antenna Coordinates

  • Hwanho, Jeong;Hyunjin, Jang;Youngsun, Yun;ByungSeok, Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.83-89
    • /
    • 2023
  • The Korea Augmentation Satellite System (KASS) system is a Satellite Based Augmentation System (SBAS) under development to provide APV-I SBAS service in the Republic of Korea. The KASS ground segment generates correction and integrity information for GPS measurements of KASS users using the accurate positions of KASS Reference Station (KRS) antenna phase centers. For this reason, the accuracy of KRS reference points through geodetic survey campaigns is one of the important factors for providing the KASS service in compliance with the required navigation performance. In order to obtain accurate positions, two geodetic survey campaigns were performed at several reference points, such as Mark, Center of Mast at Ground Level (CMGL), and Center of Hole in Top Plate (CHTP), of each KRS site using three different survey methods, the Virtual Reference Station (VRS), Flächen Korrektur Parameter (FKP), and raw data post-processing methods. By comparing and analyzing the results, the computed coordinates of the reference points were verified and Antenna Phase Center (APC) positions were calculated using KRS Antenna Reference Point (ARP) data, and the first KASS Site Acceptance Test (SAT#1) was performed successfully using the verified APC coordinates. After the first site survey activities, the KASS operators should maintain the coordinates with the required performance such that the overall KASS navigation performance commitment is guaranteed during the lifetime of 15 years. Therefore, the maintenance plan for the KRS antenna coordinates should be developed before the commissioning of KASS operation planned after 2023. Therefore, this paper presents a geodetic survey method selected for the maintenance activities and provides the rationale for using this method.

Considerations on In-Flight Validation for KASS (KASS 비행시험 및 검사 시 고려사항 분석)

  • Koo, Bon-Soo;Lee, Eun-Sung;Nam, Gi-Wook;Kang, Jae-Min;Cho, Jeong-Ho;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.3
    • /
    • pp.175-181
    • /
    • 2015
  • Method establishment needs for recent shortening the flight path, fuel reduction, reduction of the flight delay time, increase of the route capacity like as relieve congested airspace and solving future demand. However, As the existing conventional navigation systems is impossible to be resolved. Hereupon, SBAS has been developed with using the GNSS. ICAO has recommended that SBAS need to be operated with aircraft operation from 2025, korea is also developing KASS in accordance with the recommendation. In this paper, before the 2022 KASS will be completed, KASS can be expected using for flight test and inspection as analyzing KASS flight test and relative specifications.

Plan of KASS NOTAM Service Provision & System Architecture Through Analysis of Overseas Case (국외 사례분석을 통한 KASS NOTAM 서비스 제공 및 시스템 구성 방안)

  • Han, Ji-Ae;Lee, EunSung;Kim, Youn-Sil;Kang, Hee Won
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.96-104
    • /
    • 2018
  • NOTAM is an announcement that is distributed to flight attendants with status information related to aviation. ICAO, the International Civilian Aviation Organization, recommends that a NOTAM service be provided for the SBAS service in order to use the SBAS signal-based access procedure. To comply with ICAO recommendation, KASS must provide NOTAM service to all aircraft landing using SBAS signal in order to provide APV-I SoL service. Therefore, it is necessary to develop KASS NOTAM system to provide KASS NOTAM service. In this paper, we analyzed the regulations related to NOTAM in Korea and abroad and analyzed the present state of NOTAM service in Korea. Based on this, we propose a method of providing KASS NOTAM service. We analyzed the NOTAM system of WAAS in the US and EGNOS in Europe and analyzed the main functional requirements of the KASS NOTAM system.

A Study on the Verification Method for KASS Control Station

  • Kim, Koontack;Won, Dae Hee;Park, Yeol;Lee, Eunsung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.3
    • /
    • pp.221-228
    • /
    • 2021
  • The Korea Augmentation Satellite System (KASS) is a Korean Satellite Based Augmentation System (SBAS) that has been under development since 2014 with the goal of providing Approach Procedure with Vertical guidance (APV)-I Safety of Life (SoL) services. KASS Control Station (KCS) is a subsystem that controls and monitors KASS systems. It also serves to store data generated by KASS. KCS has now completed detailed design and implementation and verification is in progress. This paper presents verification procedures and verification items for KCS verification activities and presents management measures for defects occurring during the verification phase.