• Title/Summary/Keyword: KARE

Search Result 43, Processing Time 0.019 seconds

Association between Tuberculosis Case and CD44 Gene Polymorphism (결핵 발병과 CD44 유전자 다형성사이의 연관성 연구)

  • Lim, Hee-Seon;Lee, Sang-In;Park, Sangjung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.3
    • /
    • pp.323-328
    • /
    • 2019
  • Tuberculosis, a chronic bacterial infection caused by Mycobacterium tuberculosis (MTB), differs in its status latency and activity because of the characteristics of MTB, immune status of the host, and genetic susceptibility. The host defense mechanism against MTB is caused mainly by interactions between macrophages, T cells, and dendritic cells. CD44 is expressed in activated T cells when infected with MTB and regulates lymphocyte migration. In addition, CD44 mediates leukocyte adhesion to the ECM and plays a role in attracting macrophages and $CD4^+$ T cells to the lungs. Therefore, genetic polymorphism of the CD44 gene will inhibit the host cell immune mechanisms against MTB. This study examined whether the genetic polymorphism of the CD44 gene affects the susceptibility of tuberculosis. A total of 237 SNPs corresponding to the CD44 genes were analyzed using the genotype data of 443 tuberculosis cases and 3,228 healthy controls from the Korean Association Resource (KARE). Of these, 17 SNPs showed a significant association with the tuberculosis case. The most significant SNP was rs75137824 (OR=0.231, CI: 1.51~3.56, $P=1.3{\times}10^{-4}$). In addition, rs10488809, one of the 17 significant SNPs, is important for the tuberculosis outbreak can bind to the JUND and FOS transcription factors and can affect CD44 gene expression. This study suggests that polymorphism of the CD44 gene modulates the host susceptibility to tuberculosis in a variety of ways, resulting in differences in the status of tuberculosis.

Association between PPARGC1A Genetic Polymorphisms and Type 2 Diabetes Mellitus in the Korean Population (한국인 대상의 PPARGC1A 유전적 다형성과 제2형 당뇨병과의 상관성)

  • Jin, Hyun-Seok;Park, Sangwook
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.53 no.1
    • /
    • pp.81-87
    • /
    • 2021
  • The prevalence of type 2 diabetes mellitus (T2DM) is increasing worldwide. T2DM is one of the most common types of diabetes and is caused by increased insulin resistance and reduced insulin secretion. Peroxisome proliferator-activated receptor γ coactivator 1 alpha (PPARGC1A) is a master modulator of mitochondrial biogenesis and of gluconeogenesis in liver. In this study, we analyzed genetic polymorphisms of PPARGC1A gene in a middle-aged Korean population with T2DM. Using the genotype data of 736 T2DM cases and 4544 healthy controls obtained from the Korean Association Resource (KARE), we analyzed genetic correlations between single nucleotide polymorphisms (SNPs) of PPARGC1A and T2DM. Fifteen SNPs of PPARGC1A demonstrated a statistically significant association with T2DM. Of these, rs10212638 exhibited the strongest correlation with T2DM (P-value=0.015, OR=1.29, CI=1.05~1.59), and the minor G allele of PPARGC1A increased the risk of T2DM. This is the first study to report a significant association between genetic polymorphisms in PPARGC1A and T2DM and suggests that SNPs of PPARGC1A display genetic correlations to the etiology of T2DM.

Genome-wide Association Study Identification of a New Genetic Locus with Susceptibility to Osteoporotic Fracture in the Korean Population

  • Hwang, Joo-Yeon;Lee, Seung-Hun;Go, Min-Jin;Kim, Beom-Jun;Kim, Young-Jin;Kim, Dong-Joon;Oh, Ji-Hee;Koo, Hee-Jo;Cha, My-Jung;Lee, Min-Hye;Yun, Ji-Young;Yoo, Hye-Sook;Kang, Young-Ah;Oh, Ki-Won;Kang, Moo-Il;Son, Ho-Young;Kim, Shin-Yoon;Kim, Ghi-Su;Han, Bok-Ghee;Cho, Yoon-Shin;Koh, Jung-Min;Lee, Jong-Young
    • Genomics & Informatics
    • /
    • v.9 no.2
    • /
    • pp.52-58
    • /
    • 2011
  • Osteoporotic fracture (OF), along with bone mineral density (BMD), is an important diagnostic parameter and a clinical predictive risk factor in the assessment of osteoporosis in the elderly population. However, a genome-wide association study (GWAS) on OF has not yet been clarified sufficiently. To identify OF-associated genetic variants and candidate genes, we conducted a GWAS in a population-based cohort (Korean Association Resource [KARE], n=1,427 [case: 288 and control: 1139]) and performed a de novo replication study in hospital-based individuals (Asan and Catholic Medical Center [ACMC], n=1,082 [case: 272 and control: 810]). In a combined meta-analysis, a newly identified genetic locus in an intergenic region at 10p11.2 (near genes FZD8 and ANKRD30A ) showed the most significant association (odd ratio [OR] = 2.00, 95% confidence interval [CI] = 1.47~2.74, p=$1.27{\times}10^{-6}$) in the same direction. We provide the first evidence for a common genetic variant influencing OF and genetic information for further investigation in bone metabolism.