• Title/Summary/Keyword: K-water cumulative difference method

Search Result 8, Processing Time 0.022 seconds

Theoretical analysis of quantification of drought frequency inflow series via K-water cumulative difference method (누가차분법을 통한 가뭄 빈도유입량 산정에 관한 이론적 고찰)

  • Kim, Jiheun;Lee, Jae Hwang;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.9
    • /
    • pp.701-705
    • /
    • 2022
  • Reliable drought inflow scenarios are required to plan reservoirs in response to the present severe drought-like conditions. However, the previously developed method for generating drought inflows, the K-water cumulative difference method (KCM), is considered inadequate owing to its potential for negative inflow, reversal phenomena, and overestimation. Nevertheless, the occurrence of these aspects has not been theoretically analyzed. Hence, this study employed the quantile function and frequency factor for log-normal and Gumbel distributions to quantify the contributing factors of these limitations. Consequently, it was found that the negative inflows are generated when the difference in the location parameters, during the accumulation process, exceeds that of the scale parameters. In addition, as the standard deviation decrease during the accumulation process, the reversal phenomena, and inflated values prevailed.

Analysis of the Difference of Flow Duration Curve according to the Cumulative Variation of the Daily Average Flow in Unit Watershed for TPLCs (총량관리 단위유역 일평균유량의 시계열 누적 변화에 따른 유량지속곡선 차이 분석)

  • Hwang, Ha-sun;Rhee, Han-pil;Seo, Ji-yeon;Choi, Yu-jin;Park, Ji- hyung;Shin, Dong-seok;Lee, Sung-jun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.97-109
    • /
    • 2018
  • The LDC (Load Duration Curve) method can analyze river water quality changes according to flow rate and seasonal conditions. It is also possible to visually recognize whether the target water quality is exceeded or the size of the reduction load. For this reason, it is used for the optimal reduction of TPLCs and analysis of the cause of water pollution. At this time, the flow duration curve should be representative of the water body hydrologic curve, but if not, the uncertainty of the interpretation becomes big because the damaged flow condition is changed. The purpose of this study is to estimate the daily mean flow of the unit watershed using the HSPF model and to analyze the difference of the flow duration curves according to the cumulative daily mean flow rate using the NSE technique. The results show that it is desirable to construct the flow duration curve by using the daily average flow rate of at least 5 years although there is a difference by unit watershed. However, this is the result of the water bodies at the end of Han River basin watershed, so further study on various water bodies will be necessary in the future.

Volume Estimation Method for Greenhouse Rainwater Tank (온실 빗물 저수조의 용량산정 방법)

  • Seo, Chan Joo;Koo, Ja-Kong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.2
    • /
    • pp.31-39
    • /
    • 2016
  • Due to the temporal variation of inflow/outflow, the water tank is needed. For the calculation of water tank capacity, the absolute difference between cumulative amounts of supply(e.g., rainfall) and demand(e.g.,watering) is used. No matter the (-) and (+) the absolute maximum capacity of the subtraction is calculated as the capacity. In this paper, using rainfall and watering of greenhouse facilities, it is proved that the non-linear supply or demand can be applied, and it is proved also that the greater non-linear variation case. And as the time interval for monitoring is decreased, the basin or tank volume are increased, with approximately 10 days as the critical monitoring interval for the annual natural rainfall event.

Analysis of Rainfall-Runoff Characteristics on Bias Correction Method of Climate Change Scenarios (기후변화 시나리오 편의보정 기법에 따른 강우-유출 특성 분석)

  • Kum, Donghyuk;Park, Younsik;Jung, Young Hun;Shin, Min Hwan;Ryu, Jichul;Park, Ji Hyung;Yang, Jae E;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.3
    • /
    • pp.241-252
    • /
    • 2015
  • Runoff behaviors by five bias correction methods were analyzed, which were Change Factor methods using past observed and estimated data by the estimation scenario with average annual calibration factor (CF_Y) or with average monthly calibration factor (CF_M), Quantile Mapping methods using past observed and estimated data considering cumulative distribution function for entire estimated data period (QM_E) or for dry and rainy season (QM_P), and Integrated method of CF_M+QM_E(CQ). The peak flow by CF_M and QM_P were twice as large as the measured peak flow, it was concluded that QM_P method has large uncertainty in monthly runoff estimation since the maximum precipitation by QM_P provided much difference to the other methods. The CQ method provided the precipitation amount, distribution, and frequency of the smallest differences to the observed data, compared to the other four methods. And the CQ method provided the rainfall-runoff behavior corresponding to the carbon dioxide emission scenario of SRES A1B. Climate change scenario with bias correction still contained uncertainty in accurate climate data generation. Therefore it is required to consider the trend of observed precipitation and the characteristics of bias correction methods so that the generated precipitation can be used properly in water resource management plan establishment.

A Study on the Improvement of Huff's Method for Applying in Korea : II. Improvement of Huff's Method (Huff 강우시간분포방법의 개선방안 연구 : II. Huff 방법의 개선방안)

  • Jang Su-Hyung;Yoon Jae-Young;Yoon Yong-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.9 s.170
    • /
    • pp.779-786
    • /
    • 2006
  • In this study, we propose a new method that utilizes rainfall data in and out of a basin, which is greater than 25.4mm for point rainfall or 12.7mm for areal mean rainfall respectively. From our analysis, most frequent quartile for point and areal mean rainfall were found to be the same in general for various rainfall duration intervals. From an evaluation of design rainfall per each rainfall duration distributed in time by the MOCT(Ministry of Construction and Transportation) version of Huff's method and this study, peak rainfall intensity by this study was found to be greater than the one by MOCT, but there were no consistent increase or decrease of this difference with rainfall durations. Using the distributed design rainfall per each duration by MOCT and this study, corresponding flood inflow hydrographs were simulated and compared each other. Contrary to the case of peak rainfall intensity, difference in peak flow by both methods per each rainfall duration started to increase from about 12-hr duration. Especially, the difference in peak flow was significant when critical rainfall duration was considered, and this trend was similar for peak flows of other rainfall durations. Therefore, the method proposed in this study is thought to be the effective procedure for the construction of dimensionless cumulative rainfall curve that is representative of a basin while considering time distribution characteristics for different rainfall durations.

An Analysis of Groudwater Budget in a Water Curtain Cultivation Site (청원 수막재배 지역의 물수지 특성 분석)

  • Chang, Sun Woo;Chung, Il-Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.1259-1267
    • /
    • 2015
  • In Korea, rural groundwater development faces new challenge, which have not been experienced so far. The problem is a groundwater depletion by the water curtain cultivation (WCC) during winter season. This study investigates the groundwater depletion using three-dimensional finite difference groundwater flow program, MODFLOW to verify the water budget of the shallow aquifer of Cheongweon area. Interdisciplinary research, which has become a worldwide trend, has been adopted in studying groundwater modeling in field scale. In particular, the method of groundwater recharge estimation adopted precise modeling techniques, SWAT to groundwater flow modeling. Based on qualified field data, the model calibrated and validated its reliability. The objective of this study is to simulate various stream-aquifer interactions according to groundwater pumping with artificial boundaries, such as weirs and drainage system. We also analyzed a seasonal variation of cumulative water budget of the site to quantify the groundwater depletion and recovery in the pumping field.

An Experimental Study on Droplet Size according to Discharge Coefficient of Sprinkler Head (스프링클러 헤드의 방수상수에 따른 물방울 크기에 관한 실험적 연구)

  • Hur, Min Noung;Shin, Changsub
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.4
    • /
    • pp.16-21
    • /
    • 2017
  • The sprinkler system is a basic fire extinguishing system that uses water as an extinguishing agent. In order to evaluate the fire extinguishing performance of the sprinkler system, information such as the discharge angle, discharge speed, discharge pressure, flow rate, and water droplet size of the installed head are required. However, there is a lack of research on droplets size compared to other requirements. In this study, to evaluate the extinguishing characteristics of sprinkler system, the droplet size distribution was measured for various types of sprinkler heads actually used. The size of the droplet was measured using laser diffraction method. The 50% cumulative volume distribution ($D_{v50}$) according to discharge coefficient(K factor) was $540{\mu}m{\sim}695{\mu}m$ for K50, $542{\mu}m{\sim}1,192{\mu}m$ for K80, $980{\mu}m{\sim}1,223{\mu}m$ for K115 and $1,188{\mu}m{\sim}1,234{\mu}m$ for K202. Based on the measured results, the vaeiance of the droplet particle distribution and the distribution ($D_{v50}$) according to discharge coefficient(K factor) was $540{\mu}m{\sim}695{\mu}m$ for K50, $542{\mu}m{\sim}1,192{\mu}m$ for K80, $980{\mu}m{\sim}1,223{\mu}m$ for K115 and $1,188{\mu}m{\sim}1,234{\mu}m$ for K202. Based on the measured results, the vaeiance of the droplet particle distribution and the Rosin-Rammler index value are presented. As a result of the fire simulation with FDS, it was confirmed that the performance difference occurs according to the water droplet size distribution even when the same amount of water is used. Therefore, the extinguishing performance of the sprinkler system should be evaluated considering the droplet size distribution according to the sprinkler head type.

Comparative Study on Evaluating Standard Flow in Partially Gauged and Ungauged Watershed (부분계측 및 미계측 유역에서 기준유량 산정 방법 비교 연구)

  • Kim, Gyeonghoon;Kim, Jeongmin;Jeong, Hyunki;Im, Taehyo;Kim, Seongmin;Kim, Yongseok;Seo, Mijin
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.481-496
    • /
    • 2019
  • The Ministry of Environment has measured streamflow at eight-day intervals for the estimation of standard flow of the Total Maximum Daily Loads (TMDL) system. This study identified the availability of the partially measured the eight-day interval data for estimating standard flow and found the optimal extension techniques of standard flow. The study area was selected for the Nakbon-A watershed in the Nakdong River, and four streamflow record extension techniques of standard flow were considered: extension, percentile, drainagearea, and regional regression methods. The flow duration curve (FDC) using the eight-day interval streamflow data indicated very high Nash and Sutcliffe Efficiency (NSE) values above 90 % from FDC-II to FDC-VII compared to FDC-VIII, the standard FDC. This result demonstrates that FDC using daily data of three-six cumulative years could represent standard FDC fairly well. For the streamflow record extension techniques of standard flow, the percentile method was selected as the optimal alternative, showing the minimal difference from FDC-VIII. These results validate the availability of the eight-day interval streamflow data in the standard flow estimation and the application of extension techniques. It seems that these results could reduce the uncertainty of partially measured streamflow data for water quantity and quality management.