• Title/Summary/Keyword: K-user Interference Channel

Search Result 195, Processing Time 0.024 seconds

Effect of transmit power on the optimal number of feedback bits in dense cellular networks (셀룰러 네트워크에서 송신파워가 최적의 피드백 정보량에 미치는 영향에 관한 연구)

  • Min, Moonsik;Na, Cheol-Hun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.464-466
    • /
    • 2018
  • In this paper, a dense cellular network is considered in which each base station equipped with multiple antennas simultaneously communicates with multiple single-antenna users. Based on limited feedback, each user feeds back its quantized channel state information (CSI) to its associated transmitter, and the transmitter broadcasts multiple data streams prepared for the scheduled users using a space-division multiple access scheme. As the amount of CSI is limited at the transmitter, the downlink throughput increases with the number feedback bits. However, the increased number of feedback bits requires the correspondingly increased amount of uplink resources. Thus, an appropriate balance between the downlink throughput and the uplink resource usage should be considered in realistic systems. A net spectral efficiency defined in this context is used in this paper, and the optimal number of feedback bits that maximizes the net spectral efficiency is analyzed. This paper particularly focuses on the case when the received signal power is much smaller than the noise power.

  • PDF

A Pseudo-Random Beamforming Technique for Time-Synchronized Mobile Base Stations with GPS Signal

  • Son, Woong;Jung, Bang Chul
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.2
    • /
    • pp.53-59
    • /
    • 2018
  • This paper proposes a pseudo-random beamforming technique for time-synchronized mobile base stations (BSs) for multi-cell downlink networks which have mobility. The base stations equipped with multi-antennas and mobile stations (MSs) are time-synchronized based on global positioning system (GPS) signals and generate a number of transmit beamforming matrix candidates according to the predetermined pseudo-random pattern. In addition, MSs generate receive beamforming vectors that correspond to the beam index number based on the minimum mean square error (MMSE) using transmit beamforming vectors that make up a number of transmit beamforming matrices and wireless channel matrices from BSs estimated via the reference signals (RS). Afterward, values of received signal-to-interference-plus-noise ratio (SINR) with regard to all transmit beamforming vectors are calculated, and the resulting values are then feedbacked to the BS of the same cells along with the beam index number. Each of the BSs calculates each of the sum-rates of the transmit beamforming matrix candidates based on the feedback information and then transmits the calculated results to the BS coordinator. After this, optimum transmit beamforming matrices, which can maximize a sum-rate of the entire cells, are selected at the BS coordinator and informed to the BSs. Finally, data signals are transmitted using them. The simulation results verified that a sum-rate of the entire cells was improved as the number of transmit beamforming matrix candidates increased. It was also found that if the received SINR values and beam index numbers are feedbacked opportunistically from each of the MSs to the BSs, not only nearly the same performance in sum-rate with that of applying existing feedback techniques could be achieved but also an amount of feedback was significantly reduced.

Decentralized Frequency Reuse Scheme Supporting Best-Effort Services in Downlink Small-Cell Network (하향링크 스몰셀 네트워크 환경에서 최선형 서비스를 위한 분산적인 주파수 재사용 기법)

  • Park, Seung Young;Kim, Joon Young;Kim, Dong Hoi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.4
    • /
    • pp.360-370
    • /
    • 2013
  • When best-effort traffic users are supported in a downlink small-cell network, conventional schemes assign the channels experiencing low co-channel interference at each base station and provide a better downlink performance to the user near its serving base station, so that conventional schemes are not suitable to fairly support all users. In this paper, we propose a decentralized frequency reuse scheme for a small-cell network, where each basestation chooses a set of channels to fairly support the best-effort traffic users regardless of the distances to their serving basestation. After performing the conventional scheme that each basestation selects the channels which are not used in its adjacent basestations, it updates assigned channels improving the performance of low throughput users in a fully distributed manner with mitigating the overall throughput performance loss. The computer simulation demonstrates that the average throughput performance of the 10th percentile throughput users is improved up to 15% in some case compared to that of the conventional scheme, while allowing the overall throughput loss around 3%.

Capacity Comparison of Two Uplink OFDMA Systems Considering Synchronization Error among Multiple Users and Nonlinear Distortion of Amplifiers (사용자간 동기오차와 증폭기의 비선형 왜곡을 동시에 고려한 두 상향링크 OFDMA 기법의 채널용량 비교 분석)

  • Lee, Jin-Hui;Kim, Bong-Seok;Choi, Kwonhue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.5
    • /
    • pp.258-270
    • /
    • 2014
  • In this paper, we investigate channel capacity of two kinds of uplink OFDMA (Orthogonal Frequency Division Multiple Access) schemes, i.e. ZCZ (Zero Correlation Zone) code time-spread OFDMA and sparse SC-FDMA (Single Carrier Frequency Division Mmultiple Access) robust to access timing offset (TO) among multiple users. In order to reflect the practical condition, we consider not only access TO among multiple users but also peak to average power ratio (PAPR) which is one of hot issues of uplink OFDMA. In the case with access TO among multiple users, the amplified signal of users by power control might affect a severe interference to signals of other users. Meanwhile, amplified signal by considering distance between user and base station might be distorted due to the limit of amplifier and thus the performance might degrade. In order to achieve the maximum channel capacity, we investigate the combinations of transmit power so called ASF (adaptive scaling factor) by numerical simulations. We check that the channel capacity of the case with ASF increases compared to the case with considering only distance i.e. ASF=1. From the simulation results, In the case of high signal to noise ratio (SNR), ZCZ code time-spread OFDMA achieves higher channel capacity compared to sparse block SC-FDMA. On the other hand, in the case of low SNR, the sparse block SC-FDMA achieves better performance compared to ZCZ time-spread OFDMA.

A Study on Polynomial Pre-Distortion Technique Using PAPR Reduction Method in the Next Generation Mobile Communication System (차세대 이동통신 시스템에 PAPR 감소기법을 적용한 다항식 사전왜곡 기법에 관한 연구)

  • Kim, Wan-Tae;Park, Ki-Sik;Cho, Sung-Joon
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.684-690
    • /
    • 2010
  • Recently, the NG(Next Generation) system is studied for supporting convergence of various services and multi mode of single terminal. And a demand of user for taking the various services is getting increased, for supporting these services, many systems being able to transmit a large message have been appeared. In the NG system, it has to be supporting the CDMA and WCDMA besides the tele communication systems using OFDM method with single terminal An intergrated system can be improved with adopting of SoC technique. For adopting SoC technique on the intergrated terminal, we have to solve the non linear problem of HPA(High Power Amplifier). Nonlinear characteristic of HPA distorts both amplitude and phase of transmit signal, this distortion cause deep adjacent channel interference. We adopt a polynomial pre-distortion technique for this problem. In this paper, a noble modem design for NG mobile communication service and a method using polynomial pre-distorter with PAPR technique for counterbalancing nonlinear characteristic of the HPA are proposed.