• Title/Summary/Keyword: K-stability

Search Result 20,078, Processing Time 0.042 seconds

Stability Analysis of Soil Oribatid Mite Communities (Acari: Oribatida from Namsan and Kwangreung Deciduous Forests, Korea

  • Jung, Chulue;Lee, Joon-Ho
    • The Korean Journal of Ecology
    • /
    • v.24 no.4
    • /
    • pp.239-243
    • /
    • 2001
  • One of the most important justifications of conservation of ecosystem and biodiversity is that diversity begets stability. Impact of biodiversity on community and ecosystem function has long been debated in science. Here we report the stability analysis of soil oribatid mite communities from environmentally stressed habitat(Namsan) and relatively well preserved habitat (Kwangreung) with the perspective of consistency as a primary criteria of stability. Stability of oribatid mite communities were evaluated with turnover rate, constancy analysis, b diversity index, and absolute abundance, abundance ranking, and the presence or absence of species over time. Out of 6 criteria, three consented that oribatid community from Kwangreung was more stable than that from Namsan. Those are turnover rate in litter layer, constancy analysis, and absolute abundance. Feasibility of stability analysis using oribatid mites was further discussed, rendering further study.

  • PDF

Differences in percussion-type measurements of implant stability according to height of healing abutments and measurement angle (임플란트 healing abutment 높이와 타진각도에 따른 타진방식 임플란트 안정성 측정기기의 수치 차이)

  • Park, Yang-Hoon;Leesungbok, Richard;Lee, Suk-Won;Paek, Janghyun;Lee, Jeong-Yol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.4
    • /
    • pp.278-286
    • /
    • 2018
  • Purpose: The purpose of this study was to evaluate the effect of healing abutment height and measurement angle on implant stability when using Periotest and AnyCheck. Materials and methods: 60 implants were placed into artificial bone blocks. After implant insertion, 2, 3, 4 and 5 mm healing abutments were installed on 15 specimens, respectively. Insertion torque value, implant stability test, Periotest value were measured. Insertion torque value was controlled between 45 - 55 Ncm. AnyCheck was used for measuring implant stability test and Periotest M was used for measuring Periotest value. Implant stability test and Periotest value were measured at the angles of 0 and 30 degrees to the horizontal plane. Measured values were analyzed statistically. Results: Insertion torque value had no significant difference among groups. When healing abutment height was higher, implant stability test and Periotest value showed lower stability. Also when measurement angle was decreased, implant stability test and Periotest value showed lower stability. Conclusion: When measuring stability of implants with percussion type devices, measured values should be evaluated considering height of healing abutments and measurement angle.

Effect of Rock Damage Induced by Blasting on Tunnel Stability (발파굴착의 암반손상이 터널안정성에 미치는 영향분석)

  • Lee, In-Mo;Yoon, Hyun-Jin;Kim, Dong-Hyun;Lee, Sang-Don;Park, Bong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.681-688
    • /
    • 2003
  • Rock damage induced by blasting can not be avoided during tunnel construction and may affect tunnel stability. But the mutual interaction between tunnel blasting design and tunnel stability design is generally not considered. Therefore this study propose a methodology to take into considration the results of the blasting damage in tunnel stability design. Rock damage is evaluated by dynamic numerical analysis for the most common blasting pattern adopted in road tunnel. Damage zone is determined by using the continuum damage model which is expressed as a function of volumetric strain. And the damage effect is taken into account by the damaged rock stiffness and the damaged failure criteria in tunnel stability assessment. The extend of plastic zone and deformation increase compared to the case of not considering blast-induced rock damage.

  • PDF

A fully coupled thermo-poroelastoplasticity analysis of wellbore stability

  • Zhu, Xiaohua;Liu, Weiji;Zheng, Hualin
    • Geomechanics and Engineering
    • /
    • v.10 no.4
    • /
    • pp.437-454
    • /
    • 2016
  • Wellbore instability problem is one of the main problems that met frequently during drilling, particularly in high temperature, high pressure (HPHT) formations. There are large amount of researches about wellbore stability in HPHT formations, which based on the thermo-poroelastic theory and some achievements were obtained; however, few studies have investigated on the fully coupled thermo-poroelastoplasticity analysis of wellbore stability, especially the analysis of wellbore stability while the filter cake formed. Therefore, it is very necessary to do some work. In this paper, the three-dimensional wellbore stability model which overall considering the effects of fully coupled thermo-poroelastoplasticity and filter cake is established based on the finite element method and Drucker-Prager failure criterion. The distribution of pore pressure, wellbore stress and plastic deformation under the conditions of different mud pressures, times and temperatures have been discussed. The results obtained in this paper can offer a great help on understanding the distribution of pore pressure and wellbore stress of wellbore in the HPHT formation for drilling engineers.

Real Time Wide Area Voltage Stability Index in the Korean Metropolitan Area

  • Han, Sang-Wook;Lee, Byong-Jun;Kim, Sang-Tae;Moon, Young-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.451-456
    • /
    • 2009
  • Through the development of phasor measurement units (PMU), various aspects of power system dynamic behavior could be monitored and diagnosed. Monitoring dynamic voltage stability has become one of the achievements we can obtain from PMUs. It is very important to select the most appropriate method for the Korea Electric Power Corporation (KEPCO) system since there are many voltage stability indices. In this paper, we propose an advanced WAVI (Wide Area Voltage Stability) that is well suited for the purposes of monitoring the dynamic voltage stability of KEPCO's PMU installation plan. The salient features of the proposed index are: i) it uses only PMU measurements without coupling with EMS data; ii) it is computationally unburdened and can be applied to real-time situations. The proposed index is applied to the KEPCO test system and the results show that it successfully predicts voltage instability through comparative studies.

Research on Robust Stability Analysis and Worst Case Identification Methods for Parameters Uncertain Missiles

  • Hou, Zhenqian;Liang, Xiaogeng;Wang, Wenzheng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.63-73
    • /
    • 2014
  • For robust stability analysis of parameters uncertainty missiles, the traditional frequency domain method can only analyze each respective channel at several interval points within uncertain parameter space. Discontinuous calculation and couplings between channels will lead to inaccurate analysis results. A method based on the ${\nu}$-gap metric is proposed, which is able to comprehensively evaluate the robust stability of missiles with uncertain parameters; and then a genetic-simulated annealing hybrid optimization algorithm, which has global and local searching ability, is used to search for a parameters combination that leads to the worst stability within the space of uncertain parameters. Finally, the proposed method is used to analyze the robust stability of a re-entry missile with uncertain parameters; the results verify the feasibility and accuracy of the method.

Optimization of Transient Stability Control Part-II: For Cases with Different Unstable Modes

  • Xue Yusheng;Li Wei;Hill David John
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.spc2
    • /
    • pp.341-345
    • /
    • 2005
  • Part-I of this two-part paper develops an optimal algorithm for transient stability control to coordinate the preventive actions and emergency actions for a subset of contingencies with an identical unstable mode. In this portion, several subsets of contingencies having dissimilar unstable modes are dealt with. Preventive actions benefiting a subset of contingencies may go against the stability of others, thus coordination among the optimal schemes for individual subsets is necessary. The coordination can be achieved by replacing some preventive actions with contingency-specified emergency actions. It is formulated as a classical model of economic dispatch with stability constraints and stability control costs. Such an optimal algorithm is proposed based on the algorithm in Part-I of the paper and is verified by simulations on a Chinese power system.

Power System Sensitivity Analysis for Probabilistic Small Signal Stability Assessment in a Deregulated Environment

  • Dong Zhao Yang;Pang Chee Khiang;Zhang Pei
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.spc2
    • /
    • pp.355-362
    • /
    • 2005
  • Deregulations and market practices in power industry have brought great challenges to the system planning area. In particular, they introduce a variety of uncertainties to system planning. New techniques are required to cope with such uncertainties. As a promising approach, probabilistic methods are attracting more and more attentions by system planners. In small signal stability analysis, generation control parameters play an important role in determining the stability margin. The objective of this paper is to investigate power system state matrix sensitivity characteristics with respect to system parameter uncertainties with analytical and numerical approaches and to identify those parameters have great impact on system eigenvalues, therefore, the system stability properties. Those identified parameter variations need to be investigated with priority. The results can be used to help Regional Transmission Organizations (RTOs) and Independent System Operators (ISOs) perform planning studies under the open access environment.

Identification of Correlative Transmission Lines for On-Line Stability Diagnosis (온라인 전력계통 안정도 진단을 위한 선로 선정 방안)

  • Cho, Yoon-Sung;Jang, Gil-Soo;Kwon, Sae-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.3-6
    • /
    • 2001
  • Power system stability is correlated with system structure, disturbances and operating conditions. and power flows in transmission lines are closely related with those conditions. This paper discusses a methodology to identify crucial transmission lines for stability diagnosis with respect to transient stability and small-signal stability. On-line monitoring of the selected lines enables to predict system stability in real-time. Also, a Procedure to make a priority list of monitored transmission lines using contingency analysis. The procedure is applied to the PSS/E test system. and it shows capabilities of the proposed method.

  • PDF

Stability Analysis of NCS(Networked Control System) with Network Uncertainties (네트워크 불확실성을 고려한 NCS(Networked Control System)의 안정도 분석)

  • Jung, Joon-Hong;Lee, Jong-Sung;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2383-2385
    • /
    • 2004
  • Network uncertainties can vary the stability property of networked control system. Therefore, the performance and the stability variation of networked control system due to network uncertainties must be considered first in designing networked control system. In this paper, we present a new stability analysis method of networked control system with data loss and time delay. The proposed method can determine maximum allowable time delay and allowable transmission rate that preserves stability performance of networked control system. The results of the simulation validate effectiveness of our stability analysis methods.

  • PDF