• Title/Summary/Keyword: K-means algorithm

Search Result 1,363, Processing Time 0.025 seconds

Stereo Vision Based 3D Input Device (스테레오 비전을 기반으로 한 3차원 입력 장치)

  • Yoon, Sang-Min;Kim, Ig-Jae;Ahn, Sang-Chul;Ko, Han-Seok;Kim, Hyoung-Gon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.4
    • /
    • pp.429-441
    • /
    • 2002
  • This paper concerns extracting 3D motion information from a 3D input device in real time focused to enabling effective human-computer interaction. In particular, we develop a novel algorithm for extracting 6 degrees-of-freedom motion information from a 3D input device by employing an epipolar geometry of stereo camera, color, motion, and structure information, free from requiring the aid of camera calibration object. To extract 3D motion, we first determine the epipolar geometry of stereo camera by computing the perspective projection matrix and perspective distortion matrix. We then incorporate the proposed Motion Adaptive Weighted Unmatched Pixel Count algorithm performing color transformation, unmatched pixel counting, discrete Kalman filtering, and principal component analysis. The extracted 3D motion information can be applied to controlling virtual objects or aiding the navigation device that controls the viewpoint of a user in virtual reality setting. Since the stereo vision-based 3D input device is wireless, it provides users with a means for more natural and efficient interface, thus effectively realizing a feeling of immersion.

A Study on the Prediction System of Block Matching Rework Time (블록 정합 재작업 시수 예측 시스템에 관한 연구)

  • Jang, Moon-Seuk;Ruy, Won-Sun;Park, Chang-Kyu;Kim, Deok-Eun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.1
    • /
    • pp.66-74
    • /
    • 2018
  • In order to evaluate the precision degree of the blocks on the dock, the shipyards recently started to use the point cloud approaches using the 3D scanners. However, they hesitate to use it due to the limited time, cost, and elaborative effects for the post-works. Although it is somewhat traditional instead, they have still used the electro-optical wave devices which have a characteristic of having less dense point set (usually 1 point per meter) around the contact section of two blocks. This paper tried to expand the usage of point sets. Our approach can estimate the rework time to weld between the Pre-Erected(PE) Block and Erected(ER) block as well as the precision of block construction. In detail, two algorithms were applied to increase the efficiency of estimation process. The first one is K-mean clustering algorithm which is used to separate only the related contact point set from others not related with welding sections. The second one is the Concave hull algorithm which also separates the inner point of the contact section used for the delayed outfitting and stiffeners section, and constructs the concave outline of contact section as the primary objects to estimate the rework time of welding. The main purpose of this paper is that the rework cost for welding is able to be obtained easily and precisely with the defective point set. The point set on the blocks' outline are challenging to get the approximated mathematical curves, owing to the lots of orthogonal parts and lack of number of point. To solve this problems we compared the Radial based function-Multi-Layer(RBF-ML) and Akima interpolation method. Collecting the proposed methods, the paper suggested the noble point matching method for minimizing the rework time of block-welding on the dock, differently the previous approach which had paid the attention of only the degree of accuracy.

Real-Time Interested Pedestrian Detection and Tracking in Controllable Camera Environment (제어 가능한 카메라 환경에서 실시간 관심 보행자 검출 및 추적)

  • Lee, Byung-Sun;Rhee, Eun-Joo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.293-297
    • /
    • 2007
  • This thesis suggests a new algorithm to detects multiple moving objects using a CMODE(Correct Multiple Object DEtection) method in the color images acquired in real-time and to track the interested pedestrian using motion and hue information. The multiple objects are detected, and then shaking trees or moving cars are removed using structural characteristics and shape information of the man , the interested pedestrian can be detected, The first similarity judgment for tracking an interested pedestrian is to use the distance between the previous interested pedestrian's centroid and the present pedestrian's centroid. For the area where the first similarity is detected, three feature points are calculated using k-mean algorithm, and the second similarity is judged and tracked using the average hue value for the $3{\times}3$ area of each feature point. The zooming of camera is adjusted to track an interested pedestrian at a long distance easily and the FOV(Field of View) of camera is adjusted in case the pedestrian is not situated in the fixed range of the screen. As a experiment results, comparing the suggested CMODE method with the labeling method, an average approach rate is one fourth of labeling method, and an average detecting time is faster three times than labeling method. Even in a complex background, such as the areas where trees are shaking or cars are moving, or the area of shadows, interested pedestrian detection is showed a high detection rate of average 96.5%. The tracking of an interested pedestrian is showed high tracking rate of average 95% using the information of situation and hue, and interested pedestrian can be tracked successively through a camera FOV and zooming adjustment.

  • PDF

Comparing Prediction Uncertainty Analysis Techniques of SWAT Simulated Streamflow Applied to Chungju Dam Watershed (충주댐 유역의 유출량에 대한 SWAT 모형의 예측 불확실성 분석 기법 비교)

  • Joh, Hyung-Kyung;Park, Jong-Yoon;Jang, Cheol-Hee;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.9
    • /
    • pp.861-874
    • /
    • 2012
  • To fulfill applicability of Soil and Water Assessment Tool (SWAT) model, it is important that this model passes through a careful calibration and uncertainty analysis. In recent years, many researchers have come up with various uncertainty analysis techniques for SWAT model. To determine the differences and similarities of typical techniques, we applied three uncertainty analysis procedures to Chungju Dam watershed (6,581.1 $km^2$) of South Korea included in SWAT-Calibration Uncertainty Program (SWAT-CUP): Sequential Uncertainty FItting algorithm ver.2 (SUFI2), Generalized Likelihood Uncertainty Estimation (GLUE), Parameter Solution (ParaSol). As a result, there was no significant difference in the objective function values between SUFI2 and GLUE algorithms. However, ParaSol algorithm shows the worst objective functions, and considerable divergence was also showed in 95PPU bands with each other. The p-factor and r-factor appeared from 0.02 to 0.79 and 0.03 to 0.52 differences in streamflow respectively. In general, the ParaSol algorithm showed the lowest p-factor and r-factor, SUFI2 algorithm was the highest in the p-factor and r-factor. Therefore, in the SWAT model calibration and uncertainty analysis of the automatic methods, we suggest the calibration methods considering p-factor and r-factor. The p-factor means the percentage of observations covered by 95PPU (95 Percent Prediction Uncertainty) band, and r-factor is the average thickness of the 95PPU band.

Development of Heat Flux Sensor Using Adhesive Type Film Gauge for Measuring Temperature (접착형 박막 온도측정 게이지식 열전대센서의 개발에 관한 연구)

  • Han, Eung-Kyo;Choi, Gue-Cheol;Rho, Byung-Ok;Park, Too-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.2
    • /
    • pp.52-60
    • /
    • 1992
  • In this study on the development of the heat flux sensor, unlike the common heat-flux sensor with thermocouple, the heat-treated adhesive-tupe film nickel-gauge was used in measuring temperature. The proposed its Ni-gauge is bound to be compatible with platinum gauge(Pt-Gauge) in its linearity. It is also considered to be cheap in economical sense. In the evaluation of it's performance, the numerical analysis is essential to investigate charateristics of proper sensor and the adequate analsis is depended upon boundary conditions and actual conditions. There are many types of heat flux sensor in the market, and adhexive type flux sensor is most common. In the present investigation, this type of heat flux sensor had been chosen. The figure of the sensor under consideration is an open cavity type, which is calculated numerically by SIMPLER algorithm. The temperature distributions of the sensor predicted by numerical calculation for steady and unsteady states are able to give the chacteristics of the adhesive type heat flux sensor(1st heat flux sensor) according to the heat flux. It means that the outvoltage, the sensitivity, and the performances of responsibility could be evaluated as a result. Through this analysis improved heat flux sensor(2nd heat flux sensor) could be predicted with the reflection of proper operating temperature($150^{\circ}C$) of the Ni-gauge.

  • PDF

Design of Robust Face Recognition System Realized with the Aid of Automatic Pose Estimation-based Classification and Preprocessing Networks Structure

  • Kim, Eun-Hu;Kim, Bong-Youn;Oh, Sung-Kwun;Kim, Jin-Yul
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2388-2398
    • /
    • 2017
  • In this study, we propose a robust face recognition system to pose variations based on automatic pose estimation. Radial basis function neural network is applied as one of the functional components of the overall face recognition system. The proposed system consists of preprocessing and recognition modules to provide a solution to pose variation and high-dimensional pattern recognition problems. In the preprocessing part, principal component analysis (PCA) and 2-dimensional 2-directional PCA ($(2D)^2$ PCA) are applied. These functional modules are useful in reducing dimensionality of the feature space. The proposed RBFNNs architecture consists of three functional modules such as condition, conclusion and inference phase realized in terms of fuzzy "if-then" rules. In the condition phase of fuzzy rules, the input space is partitioned with the use of fuzzy clustering realized by the Fuzzy C-Means (FCM) algorithm. In conclusion phase of rules, the connections (weights) are realized through four types of polynomials such as constant, linear, quadratic and modified quadratic. The coefficients of the RBFNNs model are obtained by fuzzy inference method constituting the inference phase of fuzzy rules. The essential design parameters (such as the number of nodes, and fuzzification coefficient) of the networks are optimized with the aid of Particle Swarm Optimization (PSO). Experimental results completed on standard face database -Honda/UCSD, Cambridge Head pose, and IC&CI databases demonstrate the effectiveness and efficiency of face recognition system compared with other studies.

Application of unmanned aerial image application red tide monitoring on the aquaculture fields in the coastal waters of the South Sea, Korea (연근해 양식장 주변 적조 모니터링을 위한 무인항공영상 적용 연구)

  • Oh, Seung-Yeol;Kim, Dae-Hyun;Yoon, Hong-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.87-96
    • /
    • 2016
  • Red tide, causes aquaculture industry the damages in Korea every summer, was usually detected by using satellite, aquaculture information was difficult to detect by using satellite. Therefore, we suggests the method for detecting the red tide using the coastal observation and the product from the unmanned aerial Vehicle. As a result, we obtained the high resolution unmanned aerial Vehicle images, detected the red tide by using the unsupervised classification from the true color images and the simple algorithm from the RGB color images. Compared the previous color images, unmanned aerial Vehicle images were clearly classified the ocean color, we were able to identify the red tide distribution in sea surface. These methods were determined to accurately monitor the red tide distribution on the aquaculture fields in the coastal waters where is established the aquaculture.

Energy Balance and Power Performance Analysis for Satellite in Low Earth Orbit

  • Jang, Sung-Soo;Kim, Sung-Hoon;Lee, Sang-Ryool;Choi, Jae-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.3
    • /
    • pp.253-262
    • /
    • 2010
  • The electrical power system (EPS) of Korean satellites in low-earth-orbit is designed to achieve energy balance based on a one-orbit mission scenario. This means that the battery has to be fully charged at the end of a one-orbit mission. To provide the maximum solar array (SA) power generation, the peak power tracking (PPT) method has been developed for a spacecraft power system. The PPT is operated by a software algorithm, which tracks the peak power of the SA and ensures the battery is fully charged in one orbit. The EPS should be designed to avoid the stress of electronics in order to handle the main bus power from the SA power. This paper summarizes the results of energy balance to achieve optimal power sizing and the actual trend analysis of EPS performance in orbit. It describes the results of required power for the satellite operation in the worst power conditions at the end-of-life, the methods and input data used in the energy balance, and the case study of energy balance analyses for the normal operation in orbit. Both 10:35 AM and 10:50 AM crossing times are considered, so the power performance in each case is analyzed with the satellite roll maneuver according to the payload operation concept. In addition, the data transmission to the Korea Ground Station during eclipse is investigated at the local-time-ascending-node of 11:00 AM to assess the greatest battery depth-of-discharge in normal operation.

Signal Processing Algorithm to Reduce RWR Electro-Magnetic Interference with Tail Rotor Blade of Helicopter

  • Im, Hyo-Bin;Go, Eun-Kyoung;Jeong, Un-Seob;Lyu, Si-Chan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.117-124
    • /
    • 2009
  • In the environment where various and complicated threat signals exist, RWR (Radar Warning Receiver), which can warn pilot of the existence of threats, has long been a necessary electronic warfare (EW) system to improve survivability of aircraft. The angle of arrival (AOA) information, the most reliable sorting parameter in the RWR, is measured by means of four-quadrant amplitude comparison direction finding (DF) technique. Each of four antennas (usually spiral antenna) of DF unit covers one of four quadrant zones, with 90 degrees apart with nearby antenna. According to the location of antenna installed in helicopter, RWR is subject to signal loss and interference by helicopter body and structures including tail bumper, rotor blade, and so on, causing a difficulty of detecting hostile emitters. In this paper, the performance degradation caused by signal interference by tail rotor blades has been estimated by measuring amplitude video signals into which RWR converts RF signals in case a part of antenna is screened by real tail rotor blade in anechoic chamber. The results show that corruption of pulse amplitude (PA) is main cause of DF error. We have proposed two algorithms for resolving the interference by tail rotor blades as below: First, expand the AOA group range for pulse grouping at the first signal analysis phase. Second, merge each of pulse trains with the other, that signal parameter except PRI and AOA is similar, after the first signal analysis phase. The presented method makes it possible to use RWR by reducing interference caused by blade screening in case antenna is screened by tail rotor blades.

Development and usability evaluation of EEG measurement device for detect the driver's drowsiness (운전자의 졸음지표 감지를 위한 뇌파측정 장치 개발 및 유용성 평가)

  • Park, Mun-kyu;Lee, Chung-heon;An, Young-jun;Ji, Hoon;Lee, Dong-hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.947-950
    • /
    • 2015
  • In the cause of car accidents in Korea, drowsy driving has shown that it is larger fctors than drunk driving. Therefore, in order to prevent drowsy driving accidents, drowsiness detection and warning system for drivers has recently become a very important issue. Furthermore, Many researches have been published that measuring alpha wave of EEG signals is the effective way in order to be aware of drowsiness of drivers. In this study, we have developed EEG measuring device that applies a signal processing algorithm using the LabView program for detecting drowsiness. According to results of drowsiness inducement experiments for small test subjects, it was able to detect the pattern of EEG, which means drowsy state based on the changing of power spectrum, counterpart of alpha wave. After all, Comparing to the results of drowsiness pattern between commercial equipments and developed device, we could confirm acquiring similar pattern to drowsiness pattern. With this results, the driver's drowsiness prevention system expect that it will be able to contribute to lowering the death rate caused by drowsy driving accidents.

  • PDF