• 제목/요약/키워드: K-means 클러스터링

Search Result 368, Processing Time 0.027 seconds

Fire Detection Approach using Robust Moving-Region Detection and Effective Texture Features of Fire (강인한 움직임 영역 검출과 화재의 효과적인 텍스처 특징을 이용한 화재 감지 방법)

  • Nguyen, Truc Kim Thi;Kang, Myeongsu;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.6
    • /
    • pp.21-28
    • /
    • 2013
  • This paper proposes an effective fire detection approach that includes the following multiple heterogeneous algorithms: moving region detection using grey level histograms, color segmentation using fuzzy c-means clustering (FCM), feature extraction using a grey level co-occurrence matrix (GLCM), and fire classification using support vector machine (SVM). The proposed approach determines the optimal threshold values based on grey level histograms in order to detect moving regions, and then performs color segmentation in the CIE LAB color space by applying the FCM. These steps help to specify candidate regions of fire. We then extract features of fire using the GLCM and these features are used as inputs of SVM to classify fire or non-fire. We evaluate the proposed approach by comparing it with two state-of-the-art fire detection algorithms in terms of the fire detection rate (or percentages of true positive, PTP) and the false fire detection rate (or percentages of true negative, PTN). Experimental results indicated that the proposed approach outperformed conventional fire detection algorithms by yielding 97.94% for PTP and 4.63% for PTN, respectively.

Designing Tracking Method using Compensating Acceleration with FCM for Maneuvering Target (FCM 기반 추정 가속도 보상을 이용한 기동표적 추적기법 설계)

  • Son, Hyun-Seung;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.82-89
    • /
    • 2012
  • This paper presents the intelligent tracking algorithm for maneuvering target using the positional error compensation of the maneuvering target. The difference between measured point and predict point is separated into acceleration and noise. Fuzzy c-mean clustering and predicted impact point are used to get the optimal acceleration value. The membership function is determined for acceleration and noise which are divided by fuzzy c-means clustering and the characteristics of the maneuvering target is figured out. Divided acceleration and noise are used in the tracking algorithm to compensate computational error. The filtering process in a series of the algorithm which estimates the target value recognize the nonlinear maneuvering target as linear one because the filter recognize only remained noise by extracting acceleration from the positional error. After filtering process, we get the estimates target by compensating extracted acceleration. The proposed system improves the adaptiveness and the robustness by adjusting the parameters in the membership function of fuzzy system. To maximize the effectiveness of the proposed system, we construct the multiple model structure. Procedures of the proposed algorithm can be implemented as an on-line system. Finally, some examples are provided to show the effectiveness of the proposed algorithm.

Regionalization of Extreme Rainfall with Spatio-Temporal Pattern (극치강수량의 시공간적 특성을 이용한 지역빈도분석)

  • Lee, Jeong-Ju;Kwon, Hyun-Han;Kim, Byung-Sik;Yoon, Seok-Yeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1429-1433
    • /
    • 2010
  • 수공구조물의 설계, 수자원 관리계획의 수립, 재해영향 검토 등을 수행할 때, 재현기간에 따른 확률개념의 강우량, 홍수량, 저수량 등을 산정하여 사용하게 되며, 보통 대상지역의 장기 수문관측 자료를 이용하여 수문사상의 확률분포를 산정한 후 재현기간을 연장하여 원하는 설계빈도에 해당하는 양을 추정하게 된다. 미계측지역 또는 관측자료의 보유기간이 짧은 지역의 경우는 지역빈도 분석 결과를 이용하게 된다. 지역빈도해석을 위해서는 강우자료들의 동질성을 파악하는 것이 가장 기본적인 과정이 되며 이를 위해 통계학적인 범주화분석이 선행되어야 한다. 지점 빈도분석의 수문학적 동질성 판별을 위해 L-moment 방법, K-means 방법에 의한 군집분석 등이 주로 사용되며 관측소 위치좌표를 이용한 공간보간법을 적용하여 시각화하고 있다. 강수량은 시공간적으로 변하는 수문변량으로서 강수량의 시간적인 특성 또한 강수량의 특성을 정의하는데 매우 중요한 요소이다. 이러한 점에서 본 연구를 통해 강수지점의 공간적인 좌표 및 강수량의 양적인 범주화에 초점을 맞춘 기존 지역빈도분석의 범주화 과정에 덧붙여 시간적인 영향을 고려할 수 있는 요소들을 결정하고 이를 활용할 수 있는 범주화 과정을 제시하고자 한다. 즉, 극치강수량의 발생 시기에 대한 정량적인 분석이 가능한 순환통계기법을 이용하여 관측 지점별 시간 통계량을 산정하고, 이를 극치강수량과 결합하여 시 공간적인 특성자료를 생성한 후 이를 이용한 군집화 해석 모형을 개발하는데 연구의 목적이 있다. 분석 과정에 있어서 시간속성의 정량화 및 일반화는 순환통계기법을 사용하였으며, 극치강수량과 발생시점의 속성자료는 각각의 평균과 표준편차를 이용하였다. K-means 알고리즘을 이용해 결합자료를 군집화 하고, L-moment 방법으로 지역화 결과에 대한 검증을 수행하였다. 속성 결합 자료의 군집화 효과는 모의데이터 실험을 통해 확인하였으며, 우리 나라의 58개 기상관측소 자료를 이용하여 분석을 수행하였다. 예비해석 단계에서 100회의 군집분석을 통해 평균적인 centroid를 산정하고, 해당 값을 본 해석의 초기 centroid로 지정하여, 변동적인 클러스터링 경향을 안정화시켜 해석이 반복됨에 따라 군집화 결과가 달라지는 오류를 방지하였다. 또한 K-means 방법으로 계산된 군집별 공간거리 합의 크기에 따라 군집번호를 부여함으로써 군집의 번호순서대로 물리적인 연관성이 인접하도록 설정하였으며, 군집간의 경계선을 추출할 때 발생할 수 있는 오류를 방지하였다. 지역빈도분석 결과는 3차원 Spline 기법으로 도시하였다.

  • PDF

A Time Series Forecasting Model with the Option to Choose between Global and Clustered Local Models for Hotel Demand Forecasting (호텔 수요 예측을 위한 전역/지역 모델을 선택적으로 활용하는 시계열 예측 모델)

  • Keehyun Park;Gyeongho Jung;Hyunchul Ahn
    • The Journal of Bigdata
    • /
    • v.9 no.1
    • /
    • pp.31-47
    • /
    • 2024
  • With the advancement of artificial intelligence, the travel and hospitality industry is also adopting AI and machine learning technologies for various purposes. In the tourism industry, demand forecasting is recognized as a very important factor, as it directly impacts service efficiency and revenue maximization. Demand forecasting requires the consideration of time-varying data flows, which is why statistical techniques and machine learning models are used. In recent years, variations and integration of existing models have been studied to account for the diversity of demand forecasting data and the complexity of the natural world, which have been reported to improve forecasting performance concerning uncertainty and variability. This study also proposes a new model that integrates various machine-learning approaches to improve the accuracy of hotel sales demand forecasting. Specifically, this study proposes a new time series forecasting model based on XGBoost that selectively utilizes a local model by clustering with DTW K-means and a global model using the entire data to improve forecasting performance. The hotel demand forecasting model that selectively utilizes global and regional models proposed in this study is expected to impact the growth of the hotel and travel industry positively and can be applied to forecasting in other business fields in the future.

Computer Vision Approach for Phenotypic Characterization of Horticultural Crops (컴퓨터 비전을 활용한 토마토, 파프리카, 멜론 및 오이 작물의 표현형 특성화)

  • Seungri Yoon;Minju Shin;Jin Hyun Kim;Ho Jeong Jeong;Junyoung Park;Tae In Ahn
    • Journal of Bio-Environment Control
    • /
    • v.33 no.1
    • /
    • pp.63-70
    • /
    • 2024
  • This study explored computer vision methods using the OpenCV open-source library to characterize the phenotypes of various horticultural crops. In the case of tomatoes, image color was examined to assess ripeness, while support vector machine (SVM) and histogram of oriented gradients (HOG) methods effectively identified ripe tomatoes. For sweet pepper, we visualized the color distribution and used the Gaussian mixture model for clustering to analyze its post-harvest color characteristics. For the quality assessment of netted melons, the LAB (lightness, a, b) color space, binary images, and depth mapping were used to measure the net patterns of the melon. In addition, a combination of depth and color data proved successful in identifying flowers of different sizes and distances in cucumber greenhouses. This study highlights the effectiveness of these computer vision strategies in monitoring the growth and development, ripening, and quality assessment of fruits and vegetables. For broader applications in agriculture, future researchers and developers should enhance these techniques with plant physiological indicators to promote their adoption in both research and practical agricultural settings.

Linear interpolation and Machine Learning Methods for Gas Leakage Prediction Base on Multi-source Data Integration (다중소스 데이터 융합 기반의 가스 누출 예측을 위한 선형 보간 및 머신러닝 기법)

  • Dashdondov, Khongorzul;Jo, Kyuri;Kim, Mi-Hye
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.33-41
    • /
    • 2022
  • In this article, we proposed to predict natural gas (NG) leakage levels through feature selection based on a factor analysis (FA) of the integrating the Korean Meteorological Agency data and natural gas leakage data for considering complex factors. The paper has been divided into three modules. First, we filled missing data based on the linear interpolation method on the integrated data set, and selected essential features using FA with OrdinalEncoder (OE)-based normalization. The dataset is labeled by K-means clustering. The final module uses four algorithms, K-nearest neighbors (KNN), decision tree (DT), random forest (RF), Naive Bayes (NB), to predict gas leakage levels. The proposed method is evaluated by the accuracy, area under the ROC curve (AUC), and mean standard error (MSE). The test results indicate that the OrdinalEncoder-Factor analysis (OE-F)-based classification method has improved successfully. Moreover, OE-F-based KNN (OE-F-KNN) showed the best performance by giving 95.20% accuracy, an AUC of 96.13%, and an MSE of 0.031.

Classification of Carbon-Based Global Marine Eco-Provinces Using Remote Sensing Data and K-Means Clustering (K-Means Clustering 기법과 원격탐사 자료를 활용한 탄소기반 글로벌 해양 생태구역 분류)

  • Young Jun Kim;Dukwon Bae;Jungho Im ;Sihun Jung;Minki Choo;Daehyeon Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.1043-1060
    • /
    • 2023
  • An acceleration of climate change in recent years has led to increased attention towards 'blue carbon' which refers to the carbon captured by the ocean. However, our comprehension of marine ecosystems is still incomplete. This study classified and analyzed global marine eco-provinces using k-means clustering considering carbon cycling. We utilized five input variables during the past 20 years (2001-2020): Carbon-based Productivity Model (CbPM) Net Primary Production (NPP), particulate inorganic and organic carbon (PIC and POC), sea surface salinity (SSS), and sea surface temperature (SST). A total of nine eco-provinces were classified through an optimization process, and the spatial distribution and environmental characteristics of each province were analyzed. Among them, five provinces showed characteristics of open oceans, while four provinces reflected characteristics of coastal and high-latitude regions. Furthermore, a qualitative comparison was conducted with previous studies regarding marine ecological zones to provide a detailed analysis of the features of nine eco-provinces considering carbon cycling. Finally, we examined the changes in nine eco-provinces for four periods in the past (2001-2005, 2006-2010, 2011-2015, and 2016-2020). Rapid changes in coastal ecosystems were observed, and especially, significant decreases in the eco-provinces having higher productivity by large freshwater inflow were identified. Our findings can serve as valuable reference material for marine ecosystem classification and coastal management, with consideration of carbon cycling and ongoing climate changes. The findings can also be employed in the development of guidelines for the systematic management of vulnerable coastal regions to climate change.

Distribution Analysis of Optimal Equipment Assignment Using a Genetic Algorithm (유전알고리즘을 이용하여 최적화된 방제 자원 배치안의 분포도 분석)

  • Kim, Hye-Jin;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.4
    • /
    • pp.11-16
    • /
    • 2020
  • As a plan for oil spill accidents, research to collect and analyze optimal equipment assignments is essential. However, studies that have diversified and analyzed the optimal equipment assignments for responding to oil spill accidents have not been preceded. In response to the need for analyzing optimal equipment assignments study, we devised a genetic algorithm for optimal equipment assignments. The designed genetic algorithm yielded 10,000 optimal equipment assignments. We clustered using the k-means algorithm. As a result, the two clusters of Yeosu, Daesan, and Ulsan, which are expected to be the largest spills, were clearly identified. We also projected 16-dimensional data in two dimensions via Sammon's mapping. The projected data were analyzed for distribution. We confirmed that results of the simulation were better than those of optimal equipment assignments included in the cluster.In the future, it will be possible to implement an approximate model with excellent performance based on this study.

Flower Recognition System Using OpenCV on Android Platform (OpenCV를 이용한 안드로이드 플랫폼 기반 꽃 인식 시스템)

  • Kim, Kangchul;Yu, Cao
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.123-129
    • /
    • 2017
  • New mobile phones with high tech-camera and a large size memory have been recently launched and people upload pictures of beautiful scenes or unknown flowers in SNS. This paper develops a flower recognition system that can get information on flowers in the place where mobile communication is not even available. It consists of a registration part for reference flowers and a recognition part based on OpenCV for Android platform. A new color classification method using RGB color channel and K-means clustering is proposed to reduce the recognition processing time. And ORB for feature extraction and Brute-Force Hamming algorithm for matching are used. We use 12 kinds of flowers with four color groups, and 60 images are applied for reference DB design and 60 images for test. Simulation results show that the success rate is 83.3% and the average recognition time is 2.58 s on Huawei ALEUL00 and the proposed system is suitable for a mobile phone without a network.

Analyzing K-POP idol popularity factors using music charts and new media data using machine learning (머신러닝을 활용한 음원 차트와 뉴미디어 데이터를 활용한 K-POP 아이돌 인기 요인 분석)

  • Jiwon Choi;Dayeon Jung;Kangkyu Choi;Taein Lim;Daehoon Kim;Jongkyn Jung;Seunmin Rho
    • Journal of Platform Technology
    • /
    • v.12 no.1
    • /
    • pp.55-66
    • /
    • 2024
  • The K-POP market has become influential not only in culture but also in society as a whole, including diplomacy and environmental movements. As a result, various papers have been conducted based on machine learning to identify the success factors of idols by utilizing traditional data such as music and recordings. However, there is a limitation that previous studies have not reflected the influence of new media platforms such as Instagram releases, YouTube shorts, TikTok, Twitter, etc. on the popularity of idols. Therefore, it is difficult to clarify the causal relationship of recent idol success factors because the existing studies do not consider the daily changing media trends. To solve these problems, this paper proposes a data collection system and analysis methodology for idol-related data. By developing a container-based real-time data collection automation system that reflects the specificity of idol data, we secure the stability and scalability of idol data collection and compare and analyze the clusters of successful idols through a K-Means clustering-based outlier detection model. As a result, we were able to identify commonalities among successful idols such as gender, time of success after album release, and association with new media. Through this, it is expected that we can finally plan optimal comeback promotions for each idol, album type, and comeback period to improve the chances of idol success.

  • PDF