K-평균 군집분석이 가지는 두 가지 근본적인 어려움은 사전에 미리 군집 수를 정해야 하는 문제와 초기 군집중심에 따라 결과가 달라질 수 있는 문제이다. 본 연구에서는 이러한 문제를 해결하기 위한 자동화 K-평균 군집분석 절차를 제안하고, R을 이용하여 구현한 결과를 제공한다. 자동화 K-평균 군집분석에서 제안된 절차는 처음 단계로서 계층적 군집분석을 행한 후 이를 이용하여 군집 수와 초기 군집수를 자동으로 정하고, 다음 단계로 이 결과를 이용하여 K-평균 군집분석을 수행하는 방법을 택하였다. 처음 단계에서 이용된 계층적 군집분석 방법으로는 Ward의 군집분석을 한 후에 Mojena의 규칙을 이용하여 군집 수를 정하는 방법을 택하거나, 모형근거 군집분석방법을 수행한 후에 BIC 값을 이용하여 군집 수를 정하는 방법을 이용하였다. 제안된 자동화 K-평균 군집절차에는 대량자료의 분석에도 용이하게 이용될 수 있도록 반복된 표본추출 방법을 이용하여 군집 수 및 군집 중심을 구하는 절차를 포함하였다. 구현된 R 프로그램은 www.knou.ac.kr/ sskim/autokmeans.r에서 제공하고 있다.
라벨 없이 진행되는 비지도 학습 중 하나인 군집분석은 자료에 어떤 그룹이 내포되어 있는지 사전 지식이 없을 경우에 군집을 발굴하고, 군집 간의 특성 차이와 군집 안에서의 유사성을 분석하고자 할 때 유용한 방법이다. 기본적인 군집분석 중 하나인 K-means 방법은 변수의 개수가 많아질 때 잘 동작하지 않을 수 있으며, 군집에 대한 해석도 쉽지 않은 문제가 있다. 따라서 고차원 자료의 경우 주성분 분석과 같은 차원 축소 방법을 사용하여 변수의 개수를 줄인 후에 K-means 군집분석을 행하는 Tandem 군집분석이 제안되었다. 하지만 차원 축소 방법을 이용해서 찾아낸 축소 차원이 반드시 군집에 대한 구조를 잘 반영할 것이라는 보장은 없다. 특히 군집의 구조와는 상관없는 변수들의 분산 또는 공분산이 클 때, 주성분 분석을 통한 차원 축소는 오히려 군집의 구조를 가릴 수 있다. 이에 따라 군집분석과 차원 축소를 동시에 진행하는 방법들이 제안되어 왔다. 그 중에서도 본 연구에서는 De Soete와 Carroll (1994)이 제안한 방법론을 확률적인 모형으로 바꿔 군집분석을 진행하는 확률적 reduced K-means를 제안한다. 모의실험 결과 차원 축소를 배제한 군집분석과 Tandem 군집분석보다 더 좋은 군집을 형성함을 알 수 있었고 군집 당 표본 크기에 비해 변수의 개수가 많은 자료에서 기존의 비 확률적 reduced K-means 군집분석에 비해 우수한 성능을 확인했다. 보스턴 자료에서는 다른 군집분석 방법론보다 명확한 군집이 형성됨을 확인했다.
Journal of the Korean Data and Information Science Society
/
제21권1호
/
pp.121-128
/
2010
케이-평균 군집분석은 데이터들을 k개의 군집으로 임의로 분할을 하여 군집의 평균을 대푯값으로 분할해 나가는 방법으로 데이터들을 유사성을 바탕으로 재배치를 하는 방법이다. 이러한 케이-평균 군집분석은 시장조사, 패턴분석 및 인식, 그리고 이미지 처리 분야 등에서 폭넓게 응용되고 있다. 그러나 대용량의 데이터베이스를 분석대상으로 하므로 그 만큼 데이터 처리 시간이 많이 소요되는 것이 문제 중의 하나이다. 특히 웹이 보편화된 현재 사용자들의 다양한 패턴을 분석하기 위한 데이터 마이닝 방법이 사용되어지고 있는데 처리 속도 문제는 더욱 중요하게 생각하고 있다. 이러한 속도 문제를 해결하기 위해 본 논문에서는 분할 군집법에서 가장 일반적으로 사용되고 있는 케이-평균 알고리즘에 대해 그리드를 기반으로 한 무게중심 알고리즘을 제안하고자 한다.
Journal of the Korean Data and Information Science Society
/
제28권5호
/
pp.1133-1144
/
2017
기상자료를 이용한 군집분석은 기상 특성에 근거한 기상 지역의 세분화를 가능하게 하고 군집을 이루는 지형별 기상 특성의 파악을 용이하게 한다. 이때 기상관측자료를 이용한 군집분석은 관측지점의 밀도가 다르기 때문에 우리나라의 기상특성이 고르게 반영되지 못할 수 있다. 반면 수치모델 격자자료는 $5km{\times}5km$ 간격으로 조밀하고 고른 자료의 생산이 가능하므로 우리나라의 기상 특성을 고르게 반영할 수 있다. 본 연구에서는 기온과 강수량의 수치모델 격자자료를 이용하여 군집분석을 수행하고, 그 결과를 바탕으로 기상관측지점에 대한 군집을 결정하였다. 기상 특성이 월별로 상이할 수 있기 때문에 군집분석은 월별로 수행하였으며, K-Means 군집분석 방법의 단점을 보완하고자 계층적 군집분석 방법인 Ward 방법과 결합하여 적용하였다. 그 결과 우리나라 기상관측지점들에 대해 시 공간적으로 세분화된 군집화가 이루어졌다.
본 연구에서는 Hierarchical K-means 군집화 알고리즘을 이용해 서울의 A아파트 가구들의 전력 사용량 패턴을 군집화 하였다. 차원을 축소해주면서 패턴을 파악할 수 있는 Hierarchical K-means 군집화 알고리즘은 기존 K-means 군집화 알고리즘의 단점을 보완하여 최근 대용량 전력 사용량 데이터에 적용되고 있는 방법론이다. 본 연구에서는 여름 저녁 피크 시간대의 시간당 전력소비량 자료에 대해 군집화 알고리즘을 적용하였으며, 다양한 군집 개수와 level에 따라 얻어진 결과를 비교하였다. 결과를 통해 사용량에 따라 패턴이 군집화 됨을 확인하였으며, 군집화 유효성 지수들을 통해 이를 비교하였다.
본 연구는 시간자료(Longitudinal data)의 분석을 위하여 Fuzzy k-means 군집분석 방법을 확장한 알고리즘을 제안한다. 이 논문에서 제안하는 군집분석방법은 각각의 개체에 대응하는 성장곡선에 Fuzzy k-means 군집분석의 알고리즘을 결합하는 것을 핵심아이디어로한다. 분석결과는 생성된 군집을 성장곡선모형으로 표현할 수 있고 또한 추정된 모형의 식을 활용하여 새로운 개체를 분류도 할수 있음을 보인다. 그리고 이 군집분석방법은 아직 자라지 않은 나이 어린 개체가 미래에 어느 군집에 속할 것인가 하는 분류와 함께 이 개체의 향후 성장상태를 예측을 하는 데에도 적용이 가능하다. 제안된 알고리즘을 원숭이(macaque)의 상악동(maxillary sinus)의 자료에 적용한 실례로 보인다.
Journal of the Korean Data and Information Science Society
/
제28권2호
/
pp.395-406
/
2017
전력 공급 시스템의 효율적인 운영을 위해 전력수요예측은 필수적이다. 본 연구에서는 군집분석과 분류분석을 이용하여 일 단위 시간별 전력수요량 시계열 패턴의 유형을 살펴보고자 한다. 전력거래소에서 수집된 2008년 1월 1일부터 2012년 12월 31일까지의 일 단위 시간별 전력수요량 데이터를 추세성분, 계절성분, 오차 성분으로 구성된 시계열 자료로 변환하여 사용하였다. 추세성분을 제거한 시계열 자료의 패턴을 구분하기 위한 군집 분석방법은 k-평균 군집분석 (k-means), 가우시안혼합모델 혼합 모델 군집분석 (Gaussian mixture model), 함수적 군집분석 (functional clustering)을 고려하였다. 주성분분석을 통해 24시간 자료를 2개의 요인로 축소한 후 k-평균 군집분석과 가우시안 혼합 모델, 함수적 군집분석을 수행하였다. 군집분석 결과를 토대로 2008년부터 2011년까지 총 4년간 데이터를 4가지 분류분석방법인 의사결정나무, RF (random forest), Naive bayes, SVM (support vector machine)을 통해 훈련시켜 2012년 군집을 예측하였다. 분석 결과 가우시안 혼합 분포기반 군집분석과 RF를 이용한 군집예측 결과의 성능이 가장 우수하였다.
컴퓨터의 발전과 인터넷의 급속한 발전으로 정보의 양이 폭발적으로 증가하게 되었고 이러한 방대한 양의 정보들은 대부분 문서 형태로 관리되기 때문에, 이들을 효과적으로 검색하고 처리하는 방법의 연구가 필요하다. 문서 군집은 문서간의 유사도를 바탕으로 서로 연관된 문서들을 군집화하여 대용량의 문서들을 자동으로 분류하고 검색하고 처리하는데 효율과 정확성을 증대시킨다. 본 논문은 특징 벡터 공간 상의 벡터들로 표현되는 문서들을 K 평균 알고리즘으로 군집화할 때, 주성분 분석을 사용하여 초기 시드점들을 선정함으로써 군집의 효율을 높이는 방법을 제안한다. 실험 결과를 통하여 제안하는 기법이 기존의 K 평균 알고리즘보다 좋은 결과를 얻을 수 있음을 보였다.
Journal of the Korean Data and Information Science Society
/
제22권4호
/
pp.741-753
/
2011
마이크로어레이 유전자 발현데이터인 효모데이터를 이용하여 군집분석을 실시하였다. 모형기반 군집방법, K-평균법, 중앙값 중심분포 (PAM), 자기 조직화 지도 (SOM), 계층적 Ward 군집방법을 이용하여 군집화를 실시하고, 연결성 측도 (connectivity), Dunn지수, 실루엣 측도 (silhouette)를 이용하여 각 군집방법에 대한 유효성을 측정하고 군집분석 결과를 비교하고자한다.
자발적인 군집을 유도하는 다변량 통계기법으로 널리 사용되는 군집분석은 데이터에 기반한 탐색적 방법으로 쓰이며 군집원칙에 따라 여러 가지 방법이 제안되어 왔다. 또한 군집화된 결과에 대하여 유효성을 측정하는 측도도 다양한방법이 개발되었다. 본 연구에서는 계층적 군집분석 방법으로 최장연결법과 Ward의 방법, 비계층적 군집분석 방법으로 K-평균법 그리고 확률분포정보를 활용한 모형기반 군집분석방법을 이용하여 모의실험으로 군집분석을 실시하고 군집유효성 측도로는 연결성, Dunn 지수, 실루엣을 구하여 각 군집방법에 대해 유효성을 비교한다. 또한, 한우 관능평가 데이터에 군집분석을 적용하여 최적의 군집 상황을 구하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.