• Title/Summary/Keyword: K-factor approach

Search Result 1,620, Processing Time 0.028 seconds

Development of a Simplified Statistical Methodology for Nuclear Fuel Rod Internal Pressure Calculation

  • Kim, Kyu-Tae;Kim, Oh-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.257-266
    • /
    • 1999
  • A simplified statistical methodology is developed in order to both reduce over-conservatism of deterministic methodologies employed for PWR fuel rod internal pressure (RIP) calculation and simplify the complicated calculation procedure of the widely used statistical methodology which employs the response surface method and Monte Carlo simulation. The simplified statistical methodology employs the system moment method with a deterministic approach in determining the maximum variance of RIP The maximum RIP variance is determined with the square sum of each maximum value of a mean RIP value times a RIP sensitivity factor for all input variables considered. This approach makes this simplified statistical methodology much more efficient in the routine reload core design analysis since it eliminates the numerous calculations required for the power history-dependent RIP variance determination. This simplified statistical methodology is shown to be more conservative in generating RIP distribution than the widely used statistical methodology. Comparison of the significances of each input variable to RIP indicates that fission gas release model is the most significant input variable.

  • PDF

A Study on the Factor Analysis of the Encounter Data in the Maritime Traffic Environment (해상교통 조우데이터 요인분석에 관한 연구)

  • Kim, Kwang-Il;Jeong, Jung Sik;Park, Gyei-Kark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.293-298
    • /
    • 2015
  • The vessel encounter data collected from the vessel trajectories in the maritime traffic situation is possible to analyze vessel collision and near-collision risk using statistical method. In this study, analyzing variables extracted from the vessel encounter data using factor analysis, we determine main factors effecting vessel collision risk from vessel encounter data. In order to calculate each factor, it used principal component analysis for factor analysis after normalization and standardization of vessel encounter variables. As a result of the factor analysis, main effect factors are summarized into the vessel approach factor and collision avoidance variance factor.

The secondary excited induction generator in random wave input system

  • Kim, Moon-Hwan
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.209-214
    • /
    • 2009
  • The employment of the induction generator is preferable in the natural energy utilization by the minimum maintenance and the mechanical robustness, Another merit is also expected when it is connected to the power network system, because constant-voltage and constant frequency (CVCF) power generation is easily realized in spite of the variation of the rotor speed. However the induction generator needs much amount of the reactive power that reduces power factor in the primary side. The improvement of power factor in the primary side requires large VAR compensator, this point is solved, the merit of the induction machine as a main generator will become more established. This paper proposes a novel approach where the secondary is controlled by a PWM inverter not only to get CVCF power but also to improve the primary power factor. Basically the inverter is controlled so that the field current is supplied from the secondary side in this approach. The required capacity of the inverter is small, because only the slip power is controlled in the secondary side. In the experimental system where the sea wave torque simulator is used, the power factor is well improved by the microcomputer controlled PWM inverter.

Online condition assessment of high-speed trains based on Bayesian forecasting approach and time series analysis

  • Zhang, Lin-Hao;Wang, You-Wu;Ni, Yi-Qing;Lai, Siu-Kai
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.705-713
    • /
    • 2018
  • High-speed rail (HSR) has been in operation and development in many countries worldwide. The explosive growth of HSR has posed great challenges for operation safety and ride comfort. Among various technological demands on high-speed trains, vibration is an inevitable problem caused by rail/wheel imperfections, vehicle dynamics, and aerodynamic instability. Ride comfort is a key factor in evaluating the operational performance of high-speed trains. In this study, online monitoring data have been acquired from an in-service high-speed train for condition assessment. The measured dynamic response signals at the floor level of a train cabin are processed by the Sperling operator, in which the ride comfort index sequence is used to identify the train's operation condition. In addition, a novel technique that incorporates salient features of Bayesian inference and time series analysis is proposed for outlier detection and change detection. The Bayesian forecasting approach enables the prediction of conditional probabilities. By integrating the Bayesian forecasting approach with time series analysis, one-step forecasting probability density functions (PDFs) can be obtained before proceeding to the next observation. The change detection is conducted by comparing the current model and the alternative model (whose mean value is shifted by a prescribed offset) to determine which one can well fit the actual observation. When the comparison results indicate that the alternative model performs better, then a potential change is detected. If the current observation is a potential outlier or change, Bayes factor and cumulative Bayes factor are derived for further identification. A significant change, if identified, implies that there is a great alteration in the train operation performance due to defects. In this study, two illustrative cases are provided to demonstrate the performance of the proposed method for condition assessment of high-speed trains.

Partial safety factors for retaining walls and slopes: A reliability based approach

  • GuhaRay, Anasua;Baidya, Dilip Kumar
    • Geomechanics and Engineering
    • /
    • v.6 no.2
    • /
    • pp.99-115
    • /
    • 2014
  • Uncertainties in design variables and design equations have a significant impact on the safety of geotechnical structures like retaining walls and slopes. This paper presents a possible framework for obtaining the partial safety factors based on reliability approach for different random variables affecting the stability of a reinforced concrete cantilever retaining wall and a slope under static loading conditions. Reliability analysis is carried out by Mean First Order Second Moment Method, Point Estimate Method, Monte Carlo Simulation and Response Surface Methodology. A target reliability index ${\beta}$ = 3 is set and partial safety factors for each random variable are calculated based on different coefficient of variations of the random variables. The study shows that although deterministic analysis reveals a safety factor greater than 1.5 which is considered to be safe in conventional approach, reliability analysis indicates quite high failure probability due to variation of soil properties. The results also reveal that a higher factor of safety is required for internal friction angle ${\varphi}$, while almost negligible values of safety factors are required for soil unit weight ${\gamma}$ in case of cantilever retaining wall and soil unit weight ${\gamma}$ and cohesion c in case of slope. Importance of partial safety factors is shown by analyzing two simple geotechnical structures. However, it can be applied for any complex system to achieve economization.

Boundary Current Mode Operated Bridgeless Boost Converter for Power Factor Correction (역률개선을 위해 경계전류모드로 동작하는 브리지리스 부스트 컨버터)

  • Yu Byung-Gyu;Lee Sung-Se;Han Sang-Kyu;Moon Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.90-94
    • /
    • 2003
  • Recently, many nations have released standard such as IEC 1000-3-2 and IEEE 519 which impose a limit on the harmonic current drawn by equipment connected to AC line in order to prevent the distortion of an AC line. Among the wide variety of active methods for improving power factor and harmonic distortion, the boost converter is very effective because it has a continuous line current , small choke filter and high power factor. In high power application, however, the bridge diode loss in the boost converter has made the efficiency lower and the temperature of the board higher. A new approach without bridge diode to make the same characteristics of the conventional boost converter has also been developed. This paper present the comparisons between the continuous current mode(CCM) operated conventional boost converter and the boundary current mode(BCM) operated the bridgeless boost converter for high efficiency and high power factor.

  • PDF

PWSCC Growth Assessment Model Considering Stress Triaxiality Factor for Primary Alloy 600 Components

  • Kim, Jong-Sung;Kim, Ji-Soo;Jeon, Jun-Young;Kim, Yun-Jae
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.1036-1046
    • /
    • 2016
  • We propose a primary water stress corrosion cracking (PWSCC) initiation model of Alloy 600 that considers the stress triaxiality factor to apply to finite element analysis. We investigated the correlation between stress triaxiality effects and PWSCC growth behavior in cold-worked Alloy 600 stream generator tubes, and identified an additional stress triaxiality factor that can be added to Garud's PWSCC initiation model. By applying the proposed PWSCC initiation model considering the stress triaxiality factor, PWSCC growth simulations based on the macroscopic phenomenological damage mechanics approach were carried out on the PWSCC growth tests of various cold-worked Alloy 600 steam generator tubes and compact tension specimens. As a result, PWSCC growth behavior results from the finite element prediction are in good agreement with the experimental results.

Extracting Requirements for Ubiquitous Computing Technology-based IS Deploying Factor Analysis (Factor Analysis를 이용한 유비쿼터스 컴퓨팅 기반 정보시스템의 요구사항 분석)

  • Em, Natalia V.;Yoo, Kee-Dong;Suh, Eui-Ho
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.140-151
    • /
    • 2005
  • This paper discusses an empirical study on extracting requirements for ubiquitous computing technology-based information system (ubi-IS) using factor analysis. After preliminary review of related literature, features specific to ubiquitous computing technology have been retrieved, selected in terms of main elements of information system (IS) (network, device, user interface, and operating system), and further used as variables during conducting factor analysis. Quantitative data was collected through questionnaire approach. The results of factor analysis manifested 5 factors containing 15 variables, and eventually, based upon the extracted factors the requirements for ubi-IS were identified.

  • PDF

A Bayesian Criterion for a Multiple test of Two Multivariate Normal Populations

  • Kim, Hae-Jung;Son, Young-Sook
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.1
    • /
    • pp.97-107
    • /
    • 2001
  • A simultaneous test criterion for multiple hypotheses concerning comparison of two multivariate normal populations is considered by using the so called Bayes factor method. Fully parametric frequentist approach for the test is not available and thus Bayesian criterion is pursued using a Bayes factor that eliminates its arbitrariness problem induced by improper priors. Specifically, the fractional Bayes factor (FBF) by O'Hagan (1995) is used to derive the criterion. Necessary theories involved in the derivation an computation of the criterion are provided. Finally, an illustrative simulation study is given to show the properties of the criterion.

  • PDF

A STATISTICAL APPROACH FOR DERIVING KEY NFC EVALUATION CRITERIA

  • Kim, S.K.;Kang, G.B.;Ko, W.I.;Youn, S.R.;Gao, R.X.
    • Nuclear Engineering and Technology
    • /
    • v.46 no.1
    • /
    • pp.81-92
    • /
    • 2014
  • This study suggests 5 evaluation criteria (safety and technology, environmental impact, economic feasibility, social factors, and institutional factors) and 24 evaluation indicators for a NFC (nuclear fuel cycle) derived using factor analysis. To do so, a survey using 1 on 1 interview was given to nuclear energy experts and local residents who live near nuclear power plants. In addition, by conducting a factor analysis, homogeneous evaluation indicators were grouped with the same evaluation criteria, and unnecessary evaluation criteria and evaluation indicators were dropped out. As a result of analyzing the weight of evaluation criteria with the sample of nuclear power experts and the general public, both sides recognized safety as the most important evaluation criterion, and the social factors such as public acceptance appeared to be ranked as more important evaluation criteria by the nuclear energy experts than the general public.