• Title/Summary/Keyword: K-best algorithm

Search Result 1,026, Processing Time 0.031 seconds

Virtual Radix Counting Bucket sort (가상의 기수계수버킷 정렬)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.95-102
    • /
    • 2015
  • Generally, there is no sorting algorithm much faster than O(nlogn). The quicksort has a best performance O(nlogn) in best and average-case, and $O(n^2)$ in worst-case. This paper suggests virtual radix counting bucket sort such that counting the frequency of numbers in each radix digit, and moves the arbitrary number to proper virtual bucket in the array, and divides the array into radix digit numbers virtually. Also, this algorithm moves the data to proper location within an array for using the minimum auxiliary memory. This algorithm performs k-times such that the number of k digits in given data and the time complexity is O(n). Therefore, this algorithm has a O(kn) time complexity.

Generating Cooperative Behavior by Multi-Agent Profit Sharing on the Soccer Game

  • Miyazaki, Kazuteru;Terada, Takashi;Kobayashi, Hiroaki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.166-169
    • /
    • 2003
  • Reinforcement learning if a kind of machine learning. It aims to adapt an agent to a given environment with a clue to a reward and a penalty. Q-learning [8] that is a representative reinforcement learning system treats a reward and a penalty at the same time. There is a problem how to decide an appropriate reward and penalty values. We know the Penalty Avoiding Rational Policy Making algorithm (PARP) [4] and the Penalty Avoiding Profit Sharing (PAPS) [2] as reinforcement learning systems to treat a reward and a penalty independently. though PAPS is a descendant algorithm of PARP, both PARP and PAPS tend to learn a local optimal policy. To overcome it, ion this paper, we propose the Multi Best method (MB) that is PAPS with the multi-start method[5]. MB selects the best policy in several policies that are learned by PAPS agents. By applying PS, PAPS and MB to a soccer game environment based on the SoccerBots[9], we show that MB is the best solution for the soccer game environment.

  • PDF

Quantization-aware Sensor Selection for Source Localization in Sensor Networks

  • Kim, Yoon-Hak
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.2
    • /
    • pp.155-160
    • /
    • 2011
  • In distributed source localization where sensors transmit measurements to a fusion node, we address the sensor selection problem where the goal is to find the best set of sensors that maximizes localization accuracy when quantization of sensor measurements is taken into account. Since sensor selection depends heavily upon rate assigned to each sensor, joint optimization of rate allocation and sensor selection is required to achieve the best solution. We show that this task could be accomplished by solving the problem of allocating rates to each sensor so as to minimize the error in estimating the position of a source. Then we solve this rate allocation problem by using the generalized BFOS algorithm. Our experiments demonstrate that the best set of sensors obtained from the proposed sensor selection algorithm leads to significant improvements in localization performance with respect to the set of sensors determined from a sensor selection process based on unquantized measurements.

Variable Selection Based on Mutual Information

  • Huh, Moon-Y.;Choi, Byong-Su
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.1
    • /
    • pp.143-155
    • /
    • 2009
  • Best subset selection procedure based on mutual information (MI) between a set of explanatory variables and a dependent class variable is suggested. Derivation of multivariate MI is based on normal mixtures. Several types of normal mixtures are proposed. Also a best subset selection algorithm is proposed. Four real data sets are employed to demonstrate the efficiency of the proposals.

AN EFFICIENT PRAM ALGORITHM FOR MAXIMUM-WEIGHT INDEPENDENT SET ON PERMUTATION GRAPHS

  • SAHA ANITA;PAL MADHUMANGAL;PAL TAPAN K.
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.77-92
    • /
    • 2005
  • An efficient parallel algorithm is presented to find a maximum weight independent set of a permutation graph which takes O(log n) time using O($n^2$/ log n) processors on an EREW PRAM, provided the graph has at most O(n) maximal independent sets. The best known parallel algorithm takes O($log^2n$) time and O($n^3/log\;n$) processors on a CREW PRAM.

Field Application of Least Cost Design Model on Water Distribution Systems using Ant Colony Optimization Algorithm (개미군집 최적화 알고리즘을 이용한 상수도관망 시스템의 최저비용설계 모델의 현장 적용)

  • Park, Sanghyuk;Choi, Hongsoon;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.4
    • /
    • pp.413-428
    • /
    • 2013
  • In this study, Ant Colony Algorithm(ACO) was used for optimal model. ACO which are metaheuristic algorithm for combinatorial optimization problem are inspired by the fact that ants are able to find the shortest route between their nest and food source. For applying the model to water distribution systems, pipes, tanks(reservoirs), pump construction and pump operation cost were considered as object function and pressure at each node and reservoir level were considered as constraints. Modified model from Ostfeld and Tubaltzev(2008) was verified by applying 2-Looped, Hanoi and Ostfeld's networks. And sensitivity analysis about ant number, number of ants in a best group and pheromone decrease rate was accomplished. After the verification, it was applied to real water network from S water treatment plant. As a result of the analysis, in the Two-looped network, the best design cost was found to $419,000 and in the Hanoi network, the best design cost was calculated to $6,164,384, and in the Ostfeld's network, the best design cost was found to $3,525,096. These are almost equal or better result compared with previous researches. Last, the cost of optimal design for real network, was found for 66 billion dollar that is 8.8 % lower than before. In addition, optimal diameter for aged pipes was found in this study and the 5 of 8 aged pipes were changed the diameter. Through this result, pipe construction cost reduction was found to 11 percent lower than before. And to conclusion, The least cost design model on water distribution system was developed and verified successfully in this study and it will be very useful not only optimal pipe change plan but optimization plan for whole water distribution system.

Prediction of Wind Power by Chaos and BP Artificial Neural Networks Approach Based on Genetic Algorithm

  • Huang, Dai-Zheng;Gong, Ren-Xi;Gong, Shu
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.41-46
    • /
    • 2015
  • It is very important to make accurate forecast of wind power because of its indispensable requirement for power system stable operation. The research is to predict wind power by chaos and BP artificial neural networks (CBPANNs) method based on genetic algorithm, and to evaluate feasibility of the method of predicting wind power. A description of the method is performed. Firstly, a calculation of the largest Lyapunov exponent of the time series of wind power and a judgment of whether wind power has chaotic behavior are made. Secondly, phase space of the time series is reconstructed. Finally, the prediction model is constructed based on the best embedding dimension and best delay time to approximate the uncertain function by which the wind power is forecasted. And then an optimization of the weights and thresholds of the model is conducted by genetic algorithm (GA). And a simulation of the method and an evaluation of its effectiveness are performed. The results show that the proposed method has more accuracy than that of BP artificial neural networks (BP-ANNs).

BLUE-Based Channel Estimation Technique for Amplify and Forward Wireless Relay Networks

  • PremKumar, M.;SenthilKumaran, V.N.;Thiruvengadam, S.J.
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.511-517
    • /
    • 2012
  • The best linear unbiased estimator (BLUE) is most suitable for practical application and can be determined with knowledge of only the first and second moments of the probability density function. Although the BLUE is an existing algorithm, it is still largely unexplored and has not yet been applied to channel estimation in amplify and forward (AF)-based wireless relay networks (WRNs). In this paper, a BLUE-based algorithm is proposed to estimate the overall channel impulse response between the source and destination of AF strategy-based WRNs. Theoretical mean square error (MSE) performance for the BLUE is derived to show the accuracy of the proposed channel estimation algorithm. In addition, the Cram$\acute{e}$r-Rao lower bound (CRLB) is derived to validate the MSE performance. The proposed BLUE channel estimation algorithm approaches the CRLB as the length of the training sequence and number of relays increases. Further, the BLUE performs better than the linear minimum MSE estimator due to the minimum variance characteristic exhibited by the BLUE, which happens to be a function of signal-to-noise ratio.

Multiobjective Optimal Reactive Power Flow Using Elitist Nondominated Sorting Genetic Algorithm: Comparison and Improvement

  • Li, Zhihuan;Li, Yinhong;Duan, Xianzhong
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.70-78
    • /
    • 2010
  • Elitist nondominated sorting genetic algorithm (NSGA-II) is adopted and improved for multiobjective optimal reactive power flow (ORPF) problem. Multiobjective ORPF, formulated as a multiobjective mixed integer nonlinear optimization problem, minimizes real power loss and improves voltage profile of power grid by determining reactive power control variables. NSGA-II-based ORPF is tested on standard IEEE 30-bus test system and compared with four other state-of-the-art multiobjective evolutionary algorithms (MOEAs). Pareto front and outer solutions achieved by the five MOEAs are analyzed and compared. NSGA-II obtains the best control strategy for ORPF, but it suffers from the lower convergence speed at the early stage of the optimization. Several problem-specific local search strategies (LSSs) are incorporated into NSGA-II to promote algorithm's exploiting capability and then to speed up its convergence. This enhanced version of NSGA-II (ENSGA) is examined on IEEE 30 system. Experimental results show that the use of LSSs clearly improved the performance of NSGA-II. ENSGA shows the best search efficiency and is proved to be one of the efficient potential candidates in solving reactive power optimization in the real-time operation systems.

Two-Phase Genetic Algorithm for Solving the Paired Single Row Facility Layout Problem

  • Parwananta, Hutama;Maghfiroh, Meilinda F.N.;Yu, Vincent F.
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.3
    • /
    • pp.181-189
    • /
    • 2013
  • This paper proposes a two-phase genetic algorithm (GA) to solve the problem of obtaining an optimum configuration of a paired single row assembly line. We pair two single-row assembly lines due to the shared usage of several workstations, thus obtaining an optimum configuration by considering the material flow of the two rows simultaneously. The problem deals with assigning workstations to a sequence and selecting the best arrangement by looking at the length and width for each workstation. This can be considered as an enhancement of the single row facility layout problem (SRFLP), or the so-called paired SRFLP (PSRFLP). The objective of this PSRFLP is to find an optimal configuration that seeks to minimize the distance traveled by the material handler and even the use of the material handler itself if this is possible. Real-world applications of such a problem can be found for apparel, shoe, and other manual assembly lines. This research produces the schematic representation solution using the heuristic approach. The crossover and mutation will be utilized using the schematic representation solution to obtain the neighborhood solutions. The first phase of the GA result is recorded to get the best pair. Based on these best matched pairs, the second-phase GA can commence.