• Title/Summary/Keyword: K-based hydrogel

Search Result 112, Processing Time 0.023 seconds

Osteogenic Differentiation of Bone Marrow Stem Cells Using Thermo-Sensitive Hydrogels (온도감응성 수화젤을 이용한 골수간엽줄기세포의 골분화 유도)

  • Kim, Sun-Kyung;Hyun, Hoon;Kim, Soon-Hee;Yoon, Sun-Jung;Kim, Moon-Suk;Rhee, John-M.;Khang, Gil-Son;Lee, Hai-Bang
    • Polymer(Korea)
    • /
    • v.30 no.3
    • /
    • pp.196-201
    • /
    • 2006
  • Poly (ethylene glycol)-based diblock and triblock thermo- sensitive polyester copolymers were investigated for application on tissue engineering and injectable biomaterials in drug delivery system due to their nontoxicity, biocompatibility and biodegradability. We synthesized the diblock copolymers consisting of methoxy poly (ethylene glycol) (MPEG) (Mn=750 g/mole) and poly $(\varepsilon-caprolactone)$ (PCL) by ring opening polymerization of $\varepsilon-CL$ with MPEG as an initiator in the presence of HCl $Et_2O$. The effect of diblock copolymers on in vivo osteogenic differentiation of rat bone marrow stromal cells (BMSCS) with and without the presence of osteogenic supplements (dexamethasone) was investigated. Thin sections were cut from paraffin embedded tissues and histological sections were stained by H&E, von Kossa, and immunohistochemical staining for osteocalcin. In conclusion, dexamethasone containing thermo- sensitive hydrogel might be improved osteogenic differentiation of BMSCs. We expect the osteoinduction effect to be excellent when it uses stem cell or other osteogenic materials.

Three-Dimensional Approaches in Histopathological Tissue Clearing System (조직투명화 기술을 통한 3차원적 접근)

  • Lee, Tae Bok;Lee, Jaewang;Jun, Jin Hyun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.1
    • /
    • pp.1-17
    • /
    • 2020
  • Three-dimensional microscopic approaches in histopathology display multiplex properties that present puzzling questions for specimens as related to their comprehensive volumetric information. This information includes spatial distribution of molecules, three-dimensional co-localization, structural formation and whole data set that cannot be determined by two-dimensional section slides due to the inevitable loss of spatial information. Advancement of optical instruments such as two-photon microscopy and high performance objectives with motorized correction collars have narrowed the gap between optical theories and the actual reality of deep tissue imaging. However, the benefits gained by a prolonged working distance, two-photon laser and optimized beam alignment are inevitably diminished because of the light scattering phenomenon that is deeply related to the refractive index mismatch between each cellular component and the surrounding medium. From the first approaches with simple crude refractive index matching techniques to the recent cutting-edge integrated tissue clearing methods, an achievement of transparency without morphological denaturation and eradication of natural and fixation-induced nonspecific autofluorescence out of real signal are key factors to determine the perfection of tissue clearing and the immunofluorescent staining for high contrast images. When performing integrated laboratory workflow of tissue for processing frozen and formalin-fixed tissues, clear lipid-exchanged acrylamide-hybridized rigid imaging/immunostaining/in situ hybridization-compatible tissue hydrogel (CLARITY), an equipment-based tissue clearing method, is compatible with routine procedures in a histopathology laboratory.