• Title/Summary/Keyword: K-Nearest Neighbor(KNN)

Search Result 88, Processing Time 0.019 seconds

On the Use of Weighted k-Nearest Neighbors for Missing Value Imputation (Weighted k-Nearest Neighbors를 이용한 결측치 대치)

  • Lim, Chanhui;Kim, Dongjae
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.1
    • /
    • pp.23-31
    • /
    • 2015
  • A conventional missing value problem in the statistical analysis k-Nearest Neighbor(KNN) method are used for a simple imputation method. When one of the k-nearest neighbors is an extreme value or outlier, the KNN method can create a bias. In this paper, we propose a Weighted k-Nearest Neighbors(WKNN) imputation method that can supplement KNN's faults. A Monte-Carlo simulation study is also adapted to compare the WKNN method and KNN method using real data set.

Adaptive Nearest Neighbors를 활용한 결측치 대치

  • 전명식;정형철
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2004.11a
    • /
    • pp.185-190
    • /
    • 2004
  • 비모수적 결측치 대치 방법으로 널리 사용되는 k-nearest neighbors(KNN) 방법은 자료의 국소적(local) 특징을 고려하지 않고 전체 자료에 대해 균일한 이웃의 개수 k를 사용하는 단점이 있다. 본 연구에서는 KNN의 대안으로 자료의 국소적 특징을 고려하는 adaptive nearest neighbors(ANN) 방법을 제안하였다. 나아가 microarray 자료의 경우에 대하여 결측치 대치를 통해 KNN과 ANN의 성능을 비교하였다.

  • PDF

Interference Elimination Method of Ultrasonic Sensors Using K-Nearest Neighbor Algorithm (KNN 알고리즘을 활용한 초음파 센서 간 간섭 제거 기법)

  • Im, Hyungchul;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.169-175
    • /
    • 2022
  • This paper introduces an interference elimination method using k-nearest neighbor (KNN) algorithm for precise distance estimation by reducing interference between ultrasonic sensors. Conventional methods compare current distance measurement result with previous distance measurement results. If the difference exceeds some thresholds, conventional methods recognize them as interference and exclude them, but they often suffer from imprecise distance prediction. KNN algorithm classifies input values measured by multiple ultrasonic sensors and predicts high accuracy outputs. Experiments of distance measurements are conducted where interference frequently occurs by multiple ultrasound sensors of same type, and the results show that KNN algorithm significantly reduce distance prediction errors. Also the results show that the prediction performance of KNN algorithm is superior to conventional voting methods.

Probabilistic K-nearest neighbor classifier for detection of malware in android mobile (안드로이드 모바일 악성 앱 탐지를 위한 확률적 K-인접 이웃 분류기)

  • Kang, Seungjun;Yoon, Ji Won
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.4
    • /
    • pp.817-827
    • /
    • 2015
  • In this modern society, people are having a close relationship with smartphone. This makes easier for hackers to gain the user's information by installing the malware in the user's smartphone without the user's authority. This kind of action are threats to the user's privacy. The malware characteristics are different to the general applications. It requires the user's authority. In this paper, we proposed a new classification method of user requirements method by each application using the Principle Component Analysis(PCA) and Probabilistic K-Nearest Neighbor(PKNN) methods. The combination of those method outputs the improved result to classify between malware and general applications. By using the K-fold Cross Validation, the measurement precision of PKNN is improved compare to the previous K-Nearest Neighbor(KNN). The classification which difficult to solve by KNN also can be solve by PKNN with optimizing the discovering the parameter k and ${\beta}$. Also the sample that has being use in this experiment is based on the Contagio.

Semantic Word Categorization using Feature Similarity based K Nearest Neighbor

  • Jo, Taeho
    • Journal of Multimedia Information System
    • /
    • v.5 no.2
    • /
    • pp.67-78
    • /
    • 2018
  • This article proposes the modified KNN (K Nearest Neighbor) algorithm which considers the feature similarity and is applied to the word categorization. The texts which are given as features for encoding words into numerical vectors are semantic related entities, rather than independent ones, and the synergy effect between the word categorization and the text categorization is expected by combining both of them with each other. In this research, we define the similarity metric between two vectors, including the feature similarity, modify the KNN algorithm by replacing the exiting similarity metric by the proposed one, and apply it to the word categorization. The proposed KNN is empirically validated as the better approach in categorizing words in news articles and opinions. The significance of this research is to improve the classification performance by utilizing the feature similarities.

Classification of Surface Defects on Steel Strip by KNN Classifier (KNN 분류기에 의한 강판 표면 결함의 분류)

  • Kim C.H.;Choi S.H.;Joo W.J.;Kim K.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.379-383
    • /
    • 2005
  • This paper proposes a new steel strip surface inspection system. The system acquires bright and dark field images of defects by using a stroboscopic IR LED light and area camera system and the defect images are preprocessed and segmented in real time for feature extraction. 4113 defect samples of cold roll steel strips are used to develop KNN (k-Nearest Neighbor) classifier which classifies the defects into 8 different types. The developed KNN classifier demonstrates about 85% classifying performance which is considered very plausible result.

  • PDF

Classification of Surface Defect on Steel Strip by KNN Classifier (KNN 분류기에 의한 강판 표면 결함의 분류)

  • Kim Cheol-Ho;Choi Se-Ho;Kim Gi-Bum;Joo Won-Jong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.80-88
    • /
    • 2006
  • This paper proposes a new steel strip surface inspection system. The system acquires bright and dark field images of defects by using a stroboscopic IR LED illuminator and area camera system and the defect images are preprocessed and segmented in real time for feature extraction. 4113 defect samples of hot rolled steel strip are used to develop KNN (k- Nearest Neighbor) classifier which classifies the defects into 8 different types. The developed KNN classifier demonstrates about 85% classifying performance which is considered very plausible result.

Optimal dwelling time prediction for package tour using K-nearest neighbor classification algorithm

  • Aria Bisma Wahyutama;Mintae Hwang
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.473-484
    • /
    • 2024
  • We introduce a machine learning-based web application to help travel agents plan a package tour schedule. K-nearest neighbor (KNN) classification predicts the optimal tourists' dwelling time based on a variety of information to automatically generate a convenient tour schedule. A database collected in collaboration with an established travel agency is fed into the KNN algorithm implemented in the Python language, and the predicted dwelling times are sent to the web application via a RESTful application programming interface provided by the Flask framework. The web application displays a page in which the agents can configure the initial data and predict the optimal dwelling time and automatically update the tour schedule. After conducting a performance evaluation by simulating a scenario on a computer running the Windows operating system, the average response time was 1.762 s, and the prediction consistency was 100% over 100 iterations.

Improvement of location positioning using KNN, Local Map Classification and Bayes Filter for indoor location recognition system

  • Oh, Seung-Hoon;Maeng, Ju-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.6
    • /
    • pp.29-35
    • /
    • 2021
  • In this paper, we propose a method that combines KNN(K-Nearest Neighbor), Local Map Classification and Bayes Filter as a way to increase the accuracy of location positioning. First, in this technique, Local Map Classification divides the actual map into several clusters, and then classifies the clusters by KNN. And posterior probability is calculated through the probability of each cluster acquired by Bayes Filter. With this posterior probability, the cluster where the robot is located is searched. For performance evaluation, the results of location positioning obtained by applying KNN, Local Map Classification, and Bayes Filter were analyzed. As a result of the analysis, it was confirmed that even if the RSSI signal changes, the location information is fixed to one cluster, and the accuracy of location positioning increases.

On the Use of Sequential Adaptive Nearest Neighbors for Missing Value Imputation (순차 적응 최근접 이웃을 활용한 결측값 대치법)

  • Park, So-Hyun;Bang, Sung-Wan;Jhun, Myoung-Shic
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.1249-1257
    • /
    • 2011
  • In this paper, we propose a Sequential Adaptive Nearest Neighbor(SANN) imputation method that combines the Adaptive Nearest Neighbor(ANN) method and the Sequential k-Nearest Neighbor(SKNN) method. When choosing the nearest neighbors of missing observations, the proposed SANN method takes the local feature of the missing observations into account as well as reutilizes the imputed observations in a sequential manner. By using a Monte Carlo study and a real data example, we demonstrate the characteristics of the SANN method and its potential performance.